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Due to the rapid advancement of technologies, a growing number of innovative products with a short life-cycle 
have been introduced to the market. As the life-cycles of such products are shorter than those of durable goods, 
the demand variation during the life-cycle adds to the difficulty of inventory management. Traditional inventory 
planning models and techniques mostly deal with products that have long life-cycles. The assumptions on the 
demand pattern and subsequent solution approaches are generally, not suitable for dealing with products with 
short life-cycles. In this research, inventory replenishment problems based on the logistic demand model are 
formulated and solved to facilitate the management of products with short life-cycles. An extended Wagner- 
Whitin approach is used to determine the replenishment cycle, schedules and lot-sizes.
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1. Introduction

In recent years, manufacturing industries are facing in-
creasing and constant challenges from their com-
petitors as well as customers, which prompts them to-
ward continuous development, design and manu-
facture of new products to meet the diverse demand. 
With the rapid advancement of technologies, more in-
novative products with short life-cycles are developed 
and introduced to the market. Such products appear 
and vanish in the market at a much faster pace than 
conventional modeling and planning can handle. With 
the length of the life-cycle being compressed, the var-
iation among different stages of the demand needs to 
be considered for modeling and planning inventory 
replenishment.

In the field of inventory management, the objective 
is to determine when and how to order so that the in-
ventory cost can be minimized. In the U.S.A., busi-

nesses invested in inventory at about 15 to 20 percent 
of the annual GDP over the past decade (Thomas, 
1995). With suppliersand buyers located in different 
countries or areas, the lead-time for producing goods 
with short life-cycles, referred to as the open-to-buy 
(OTB) period, is usually seven to eight months ahead 
of the season. Planning of demand and delivery of 
such products becomes even more crucial to ensure 
profit.

In 1970s, the energy crisis had deeply affected the 
world, especially in the escalation of inflation rates. 
During the period of 1993 to 1995 in China the annual 
inflation rate was approximately seventeen percent on 
the average (Chen, 1998). Chen also indicated that the 
effects of inflation and time-value of money for in-
ventory models are critical however, they were not 
considered explicitly as parameters in most of the ex-
isting models. The value of product due to the influ-
ence of the time-value of money may decrease sig-
nificantly. Both the time-value of money and inflation 
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should therefore be incorporated in thedecision model 
to reflect the influence of inflation and discounting 
rates.

Traditional inventory planning models and techni-
ques deal with products in the mature stage of their 
long product life-cycles. In such a stage, demand is as-
sumed to be constant or probabilistically stable, e.g., 
following normal distribution. The assumption and 
solution approaches may not be suitable for products 
with short life-cycles. It is observed that in consequence 
of the imitation effect(Rogers, 1983; Chou et al., 
2001), the number of buyers and the demand for a cer-
tain product are influenced by the previous turnouts. 
Such dynamics of demand along product life- cycles 
can be modeled with logistic models rather than a 
fixed level with normal distribution. 

Taking account of the limitations of existing works 
as described above, this research formulates and solves 
an inventoryreplenishment problem based on a logistic 
demand model-characterizing the lifecycle of the de-
mand-to facilitate the management of products of short 
life-cycles with the consideration of shortage and time 
discounting. The characteristics of the logistic model 
enable us to model demand and derive inventory poli-
cy more analytically.

2. Literature Review

One of the assumptions for the basic economic order 
quantity (EOQ) model is fixed demand. Many pro-
posed inventory models extended this assumption. 
Donaldson (1977) proposed a replenishment policy for 
inventory items having a linear trend in demand with-
out shortages over a finite time horizon. Resh et al. 
(1976), Silver (1979), Brosseau (1982), Mitra et al. 
(1984), and Goyal et al. (1992) also designed approx-
imate methods for linearly time-dependent demand. 
Some research works (Barbosa and Friedman, 1979; 
Friedman, 1981) have generalized the previous one by 
considering different functional forms for the demand 
rate, such as power functions. Some research considers 
inventory-level-dependent demand in which the de-
mand rate of a product is a function of the initial in-
ventory level and dependent on the instantaneous in-
ventory level.Chung (2003) proposed an algorithm for 
solving inventory models with inventory-level- de-
pendent demand rates. Zhou and Yang (2003) devel-

oped an optimal replenishment policy for items with 
inventory-level-dependent demand and fixed lifetime 
under the LIFO policy. Balkhi and Benkherouf (2004) 
proposed an inventory model for deteriorating items 
with stock-dependent and time-varying demand rates. 
Readers can refer to the paper (Urban, 2005) for an ex-
cellent review of this kind of inventory demand. Since 
the demand rate varies with time, both the ordering 
quantity and the ordering cycle should vary with the 
passage of time so as to obtain the minimum inventory 
cost. Keeping the ordering cycle constant and increas-
ing the ordering size will result in a higher inventory 
cost than the inventory cost of adjusting both the or-
dering quantity and the ordering cycle.

The cost function associated with the inventory sys-
tem includes replenishment cost, inventory carrying 
cost and shortage cost. In the basic EOQ model, short-
ages are not permitted. Thus there are only two costs 
in the analysis of an EOQ inventory system. The pur-
chasing cost or unit production cost is constant, and it 
is subsumed under this system. The realistic model is 
one which considers a separate inflation rate for each 
of its cost components. Hence, Misra (1979) divided 
these costs into two classes; class one consists of all 
those costs which increase at the inflation rate that pre-
vails in the company, which is internal inflation rate 
class two consists of those that increase at the inflation 
rate of the general economy or of the supplier com-
pany, which is external inflation rate. Many articles 
have not considered inflation and time-value of money 
as parameters of the system (Resh et al., 1976; Don-
aldson, 1977; Barbosa and Friedman, 1979; Firedman, 
1981; Brosseau, 1982; Goyal et al., 1992).

Hadley (1964)did some research on the effects of a 
wide range of values of the pertinent parameters, 
namely : fixed cost of placing an order, rate of return, 
the unit cost of the item and the inventory carrying 
cost on the inventory system. The final result did not 
differ significantly over a very wide range of values of 
the pertinent parameters, but in extreme circumstances 
a sizably different resultcan be obtained. Trippi and 
Lewin (1974)researched the present value of discounted 
costs of the basic EOQ model over an infinite planning 
horizon. In their final conclusion, the present value 
model seems much more robust than the classical 
average cost per unit time model in the context of er-
rors in the EOQ model. Buzacott (1975) developed an 
EOQ model that incorporated uniform inflation for all 
the costs and minimized the average annual cost into 
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Short product life-cycle Examples

Recurring seasonal products Halloween candy, snow blowers, suntan lotion, Valentine’s chocolate, seasonal fruits 
etc.

Seasonal fashion products spring wardrobe items, swimsuits, etc.

Fad products music, videotapes, books/magazine, electronic watch, movie, hula hoops, office 
products, high-tech product (disk drives, compact disk, CPU), etc

Upgrade products upgrades and new versions of software packages

Table 1. Classification of products with short life-cycles and corresponding examples

σ σ σ

Figure 1. Imitation effects among the buyers

the model,
 ktebtb 0)( = , where b0 and k are the cost at time t = 0 
and the inflation rate,respectively. He also showed that 
if the unit price is only changed at the beginning of 
each cycle, the objective function should be max-
imization of profit instead of minimization of cost; fur-
ther, the pricing continuously increased at the inflation 
rate. Bierman and Thomas (1977) simultaneously con-
sidered inflation and time-value of money, with and 
without time discounting, in their policies. These fac-
tors have significant deviation when the net discount 
rate is high, but only one inflation rate for all costs. 
Misra (1979) presented an EOQ model that considered 
the time-value of money and different inflation rates 
for various costs associated with an inventory system. 
Datta and Pal (1991) studied both the effects of in-
flation and the time-value of money with a linear 
time-dependent demand rate and allowing shortages. 

From the perspective of the short product life-cycle, 
a remarkable feature is that product demand increases 
and decreases rapidly during a short period of time. 
Such products are only sold for a limited or finite peri-
od of time, especially high-tech products, seasonal 
fashion products, fad products and so on (Lapide, 
2001). Examples are shown in <Table 1>.

Based on research by Rogers (1983) on markets with 
a fixed number of potential buyers, the buyers are dis-

tributed symmetrically across the product life-cycle 
and can be classified into five categories. The market 
innovators of the product are only about 2.5% of the 
total buyers, which will create about 13.5% of so- 
called early adopters by the imitation effect. The imi-
tation effect continues to create 34% of the early ma-
jority and the late majority, respectively, and 16% of 
the laggards. The shape of this distribution is similar to 
the curve that is used to characterize the demandin a 
traditional product life-cycle (Moore, 1993; Baxter, 
1995), as shown in <Figure 1>.

Mathematical models have been proposed for this 
kind of dynamic demand change, including the model 
of diffusion of durables by Bass (1969), BRANDAID 
model by Little (1975), and the modelof channel struc-
ture by McGuire and Staelin (1983). Furthermore, 
Mahajan et al. (1990) provided a review and directions 
for research about new product diffusion models in 
marketing. Their review focused on the Bass model. 
Ho et al. (2002) and Kuman and Swaminathan (2003) 
provided a model of new product under supply 
constraints. Both of them also focused on the Bass 
model.

Life-cycle curves as such can be divided into two 
halves-the growth and the decline parts-and modeled 
by exponential distribution. However, the exponential 
distribution has a memory-less characteristic, which 
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Figure 2. An example of the logistic curve

does not fit well with dynamic markets where demand 
variation between periods has a tight relationship. 
Instead, the logistic model which finds thousands of 
applications in various areas (Lilien et al., 1992; Urban 
and Hauser, 1993; Banks, 1994; Marchetti et al., 1996; 
Meyer et al., 1999) is adopted to model the demand 
over the short life-cycle of fashion-related products. 
The logistic model which is a special case of Bass 
model, consider the imitation effect and ignore the in-
novation effect used in Bass model. That is to say, the 
logistic model takes no notice of sales promotion.

In a simple and widely used exponential growth 
model, the growth of population p(t) is proportional to 
the population. It can be written as a differential equa-
tion as follows : 

( ) ( )dp t p t
dt

α= (1)

which can be rewritten as

( ) tp t eα β+= (2)

where α and β are respectively a constant growth 
rate and a location (horizontal shifting) parameter. 
Population p(t)can also be considered as a particular 
set of people rather than general population, for exam-
ple : participants in the spread of knowledge, people 
who fall ill during an epidemic, and buyers of certain 
products. A shortcoming of this model in practical ap-
plication is that as t goes to infinity, the population 
goes to infinity.

The logistic curve begins with α and p(t) of the ex-
ponential model; there is a negative feedback term 
[ ]ktp /)(1−  that slows down the growth as an upper 
limit k is reached : 

[ ]ktptp
dt

tdp /)(1)()(
−=α (3)

For values of p(t) << k, Equation (3)closely re-
sembles exponential growth. As the population p(t) ap-
proaches k, the feedback term causes the rate of 
growth to reduce to zero as the population p(t) ap-
proaches the limit k, producing an S-shaped curve. 
<Figure 2> illustrates a classical logistic growth curve.

Equation (3) can be rewritten as

( )
1 t

kp t
e α β− −=

+
, α > 0, β < 0 (4)

where α and β function as the growth rate parameter 
and the location parameter, respectively, and k gives 
the limit asymptotically approached by the logistic 
function, given that constant k > 0 and that the value 
of (-αt - ) is decreasing as t becomes larger (Ostrosky 
and Koch, 1979). The slope of a logistic curve in the 
form p(t) = k/(1 + e-αt-β) can be determined by taking 
the first derivative of the curve function p(t).

The growth pattern of a wide range of phenomena 
can be usefully approximated by logistic curves, for 
example, the growth of particular industries such as 
PCs and TVs; the growth of populations of humans, 
animals, insects; the mastery by students of particular 
modules of knowledge; technology adoption; and so 
on, all of which show very rapid rates of growth, fol-
lowed by a decline in the rate of growth and an even-
tual asymptotic approach to its limit (Ostrosky and 
Koch, 1979).

Similarly, the demand growth of high-tech products 
and seasonal fashion products with short life-cyclesis 
modeled as population growth of humans who demand 
the product in question. With the accumulated demand 
for the product at time t denoted as D(t), the rate at 
which the demand grows can be formulated as a dif-
ferential equation : 

( ) / ( )(1 ( ) / ),dD t dt D t D t Dα= −

0)0( DD = (5)

where α is a fixed growth rate,   is the maximum ac-
cumulated demand and D0 is the initial demand and 
the values of α and   vary with the types of products 
and geographical areas. If there is not any extra pro-
motion employed or technological breakthrough in the 
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Figure 4. The first derivative of the logistic curve

newly introduced product, the values of α, β and   
for the demand model can be estimated based on his-
torical data of similar products.

Solving the ordinary differential equation satisfying 
Equation(5) results in a logistic growth function : 

0

( )
1 ( 1) 1t tD

D

D DD t
e eα α β− − −= =

+ − + (6)

which gives the famous S-shaped curve as shown in 
<Figure 3>. The demand rate on the accumulated de-
mand increases initially until it reaches the inflection 
point τ of the curve, and then begins to decrease as it 
approaches the maximal demand. It is also noted that 
β is a location parameter which shifts the logistic 
curve by α/β in time but does not affect its shape. It 
can be shown by simple derivation that t = -β/α, β < 
0, gives the inflection point of the logistic growth 
function D(t).

Figure 3. The logistic model for fashion-related products

These changes in the accumulated demand can be 
visualized much more easily with the first derivative 
of the logistic curve, which is a bell-shaped curve sim-
ilar but not identical with the normal distribution curve 
as shown in <Figure 4>. The bell-shaped curve repre-
sents the demand rate at different times. The demand 
rate at time t, denoted as d(t), can be calculated by tak-
ing the first derivative of D(t).

2)1(
)()( βα

βαα
−−

−−

+
== t

t

e
eD

dt
tdDtd  (7)

The complete logistic demand model therefore con-
tains the introduction, growth, maturity and decline of 
the demand for the product. The maturity of the de-
mand begins at τ. The unique characteristic for this 

model is that it represents the short life-cycle of 
high-tech products, seasonal fashion products and so 
on and provides a fundamental yet meaningful basis to 
model demands and analyze subsequent impact.

3. Mathematical Model

The developed mathematical model of the inventory 
replenishment problem is based on the following as-
sumptions : 

∙ The system operates for a prescribed time period 
H.
∙ The inventory is continuously reviewed.
∙ The lead time is zero. Because the demand model 

is a deterministic one, that is, with a known de-
mand, a contract can be made between the manu-
facturer and the distributor/retailer. Under the con-
tract, the manufacturer would follow the delivery 
or replenishment schedule to manufacture the re-
quired amount of products and deliver them to the 
distributor/retailer by the due date. In other words, 
the replenishment does not happen when the prod-
ucts are exhausted; instead it follows the planned 
schedule derived through the optimization proce-
dure in this study. The lead time for the replenish-
ment can thus be assumed to be zero.
∙A single item is considered, whose accumulated 

demand, D(t), and demand rate, d(t), follows the 
logistic demand, which is a continuous function.
∙ The internal and the external inflation rates can be 

summarized by a unique inflation rate, i r repre-
sents the discount rate, and r-i > 0.
∙Both initial and final inventories are zero. Moreover, 
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shortages are allowed and fully backordered. The 
replenishment quantity is replenished instanta-
neously, as shown at point p in <Figure 5>. For the 
case where backorders are not allowed, the short-
age cost can be set at a very high value, which will 
prevent the occurrence of the shortage. Thus, the 
proposed model is applicable for the system with 
or without shortages. For the case where customers 
are willing to suspend their purchases until a later 
time, for example, for certain fashion athletic shoes, 
the distributor/retailer has to provide the customers 
with certain incentives to retain such demand. The 
burden of such incentives is a main contributor to 
the shortage cost.
∙The inventory level, shortage level, replenishment 

quantity, logistic demand model, and net discount 
rate are assumed to be continuous variables and the 
other variables are assumed to be discrete varia-
bles.
∙The total cost function includes the fixed purchas-

ing/setup cost, purchasing/production cost, holding 
cost, and shortage cost.

Figure 5. Graphical representation of the fluctuation of 
inventory levels

The notations used throughout this study are defined 
as follows : 

2)1(
)( βα

βαα
−−

−−

+
= t

t

e
eDtd

, denotes the demand rate in the 
logistic model, where t is time,   is the maximum 
accumulated demand, α is the fixed growth rate, β 
is the location parameter;
R = net discount rate of inflation. 

tir
tt eePPPW −−= )()(

R
teP −= , where Pt is the value of P at time t and r-i > 0;

F0 = fixed purchasing/setup cost for each replenish-
ment

P0 = unit purchasing/production cost for each of the 
products

H0 = unit holding cost, i.e., cost per unit and per 

time period
S0 = unit shortage cost, i.e., cost per unit and per 

time period
p = time at the replenishing point
s = starting time of the replenishment cycle at which 

shortage is about to occur
e = ending time of the replenishment cycle at which 

inventory level reaches zero;
I(t) = inventory level at time t
S(t) = shortage level at time t
Q(p) = replenishment quantity at various replenish-

ment point p.
First, consider the shortage level, S(t), at time t, s ≤ 

t ≤ p. It is utterly depleted by the effect of the logistic 
model during the period for which inventory level is 
negative. The variable state of S(t) with respect to t is 
determined by the following first-order differential 
equation : 

2( )
(1 )

t

t

d DeS t
dt e

α β

α β

α − −

− −=
+

, s ≤ t ≤ p,

 S(s) = 0. (8)

Solving the differential equation satisfying Equation 
(8) results in a function : 

 

2 
( ) ,

(1 )

ut

us

DeS t du
e

α β

α β

α − −

− −=
+∫  s ≤ t ≤ p. (9)

Similarly, the inventory level, I(t), at time t, p ≤ t ≤ 
e is represented by the following differential equation : 

2( )
(1 )

t

t

d DeI t
dt e

α β

α β

α − −

− −= −
+

,  p ≤ t ≤ e,

 I(e) = 0. (10)

Solving the differential equation satisfying Equation 
(10) results in a function : 

 

2 2 
( )

(1 ) (1 )

u ue t

u up p

De DeI t du du
e e

α β α β

α β α β

α α− − − −

− − − −= − =
+ +∫ ∫

         
 

2 (1 )

ue

ut

De du
e

α β

α β

α − −

− −+∫ ,  p≤t≤e. (11)

At the replenishment point p, the replenishment 
quantity is computed as
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dt
e
eDpIpSQ

p

s t

t

∫ −−

−−

+
+

=+=
 

 2)1(
)()( βα

βαα

dt
e
eDe

p t

t

∫ −−

−−

+

 

 2)1( βα

βαα
= .

)1(
 

 2 dt
e
eDe

s t

t

∫ −−

−−

+ βα

βαα
(12)

The present worth of the fixed purchasing/setup cost 
at the replenishment point p can be expressed as

.0
RpeFFC −= (13)

The present worth of the purchasing/product cost at 
the replenishment point p can be expressed as

QePPC Rp−= 0 .
)1(

 

 20 dt
e
eDeP

e

s t

t
Rp ∫ −−

−−
−

+
= βα

βαα
(14)

The present worth of the holding cost over the peri-
od [p, e] can be expressed as

∫ −=
e

p

Rt dttIeHHC
 

 0 )(
  

0 2  (1 )

ue eRt
up t

DeH e dudt
e

α β

α β

α − −
−

− −=
+∫ ∫

  0 0
2  (1 )

ue eRt Rt
ut p

eH HDee du e
pR e R

α β

α β

α − −
− −

− −

⎛ ⎞
= − −⎜ ⎟+⎝ ⎠

∫ ∫

2(1 )

t

t

De dt
e

α β

α β

α − −

− −+
.

)1(
)(

 

 2
0 dt

e
eDee

R
H e

p t

t
RtRp∫ −−

−−
−−

+
−= βα

βαα
(15)

The present worth of the shortage cost over the peri-
od [s, p] can be expressed as

∫ −=
p

s

Rt dttSeSSC
 

 0 )(
  

0 2  (1 )

up tRt
us s

DeS e dudt
e

α β

α β

α − −
−

− −=
+∫ ∫

 0
2 (1 )

utRt
us

S Dee du
R e

α β

α β

α − −
−

− −

⎛ ⎞
=− ⎜ ⎟+⎝ ⎠

∫
 0

2 (1 )

tp Rt
ts

p S Dee dt
s R e

α β

α β

α − −
−

− −

⎞
+⎟ +⎠
∫

2(1 )

t

t

De dt
e

α β

α β

α − −

− −+
.

)1(
)(

 

 2
0 dt

e
eDee

R
S p

s t

t
RpRt∫ −−

−−
−−

+
−= βα

βαα
(16)

The WW approach (Wagner and Whitin, 1958) is a 
dynamic programming model, which can be used to 
solve the replenishment schedule and cycle over the 
planning horizon so that the total cost is minimized. 
The optimal sequence replenishment schedule can be 
determined by the WW approach over the planning 
horizon as given by Equation (17).

}0 ),*,,(min{ HesepsFWW se ≤<≤+=

00 =W (17)

In the interval s ≤ t≤ e, the present worth of the to-
tal variable cost for each cycle, defined as the sum of 
fixed purchasing/setup, purchasing/production, hold-
ing and shortage costs, and is given by 

dt
e
eDePeFepsF

e

s t

t
RpRp ∫ −−

−−
−−

+
+=

 

 200 )1(
),,( βα

βαα

dt
e
eDee

R
H e

p t

t
RtRp∫ −−

−−
−−

+
−+

 

 2
0

)1(
)( βα

βαα

.
)1(

)(
 

 2
0 dt

e
eDee

R
S p

s t

t
RpRt∫ −−

−−
−−

+
−+ βα

βαα
(18)

It is noted that Equation (18) is one-dimensional. 
For given s and e, the optimal replenishment point p 
can be obtained from the following equation

,0),,(
=

∂
∂

p
epsF

which with full expansion equals

dt
e
eDeRPeRF

e

s t

t
RpRp ∫ −−

−−
−−

+
−−

 

 200 )1( βα

βαα

dt
e
eDeH

e

p t

t
Rp ∫ −−

−−
−

+
−

 

 20 )1( βα

βαα

.0
)1(

 

 20 =
+

+ ∫ −−

−−
− dt

e
eDeS

p

s t

t
Rp

βα

βαα
(19)

If the cost function is convex, the following suffi-
cient condition should satisfy Equation (18)so that the 
minimum cost is guaranteed in the interval [s, e].

0)*,,(
2

2

>
∂

∂
p

epsF

where

dt
e
eDePReFR

e

s t

t
RpRp ∫ −−

−−
−−

+
+

 

 20
2

0
2

)1( βα

βαα

20

 

 20 )1()1( βα

βα

βα

βα αα
−−

−−
−

−−

−−
−

+
−

+
+ ∫ t

t
Rpe

p t

t
Rp

e
eDeHdt

e
eDeRH

.0
)1()1( 20

 

 20 >
+

+
+

− −−

−−
−

−−

−−
− ∫ βα

βα

βα

βα αα
t

t
Rpp

s t

t
Rp

e
eDeSdt

e
eDeRS (20)

The minimum present worth of the total cost can be 
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determined by a recursive procedure in the forward 
method over a prescribed time period H. Then, WH, 
minimal present worth of the total cost, can be found in 
the last procedure. The optimal replenishment sched-
ule and cycle can be determined by tracking backward 
from time H to 0. <Figure 6> profiles the solution pro-
cedure for Equation (18), in which Te and p*

s,e are de-
fined as follows : 

Te = the starting point of the last replenishment cy-
cle from time zero to time e (i.e., [Te, e]), Te = 0, 
1, 2, …, e-1, and e = 1, 2, …, H,

p*
s,e = the optimal replenishment schedule in cycle 

[s, e].

Step 1   s = 0;
for (e = 1e ≤ H ; e++) {

Obtain p* from Equation (19)
Calculate F(s, p,* e) from Equation (18) 
We = F(s, p,* e), p*

s,e = p* and Te = s
}

Step 2 for (e = 2 ; e ≤ He++) {
for (s = 1 ; s ≤ e-1 ; s++) { 

Obtain p* from Equation (19)
Calculate F(s, p*, e) from Equation (18)
If We ≥Ws + F(s, p*, e) 
   We = Ws + F(s, p*, e), p*

s,e =  p* and Te = s
}

}
Step 3  e = H

while (e ≠ 0) {
Replenishment cycle = [Te, e];
Replenishment schedule = eTe

p ,*
Accumulated total cost = We

e = Te

}

Figure 6. The solution procedure for the WW approach

4. Numerical Examples

The proposed dynamic programming technique was 
implemented on a PC with a Pentium IV 1400 MHz 
CPU, and developed withMathematica 5.0 and Visual 
Basic 6.0. The solution procedure is illustrated by 
three examples. The first case tries to model the in-
ventory replenishment for personal digital assistants 
(PDA), in which shortage and time discounting effects 
are taken into consideration. The second case models 
after swimsuits but does not allow shortage due to the 
characteristics of the product. Other than an extremely 

high shortage cost, the same data set as the first case is 
used to demonstrate in contrast the effect of the short-
age on the replenishment schedule. The third case con-
siders fashion athletic shoes with a demand model 
where demand grows at a sharper pace at the begin-
ning of the lifecycle and the demand occurs in a more 
compact pattern.

Case 1 : A new model of PDA is introduced to the 
market. The maximal accumulated demand   for the 
model is estimated to be 9,000 for the market, with the 
planning horizon H equal to 18 months. It is assumed 
that when the shortage occurs, customers will wait for 
certain time periods to get the PDA only if price dis-
counts are awarded. The price discount is compounded 
to the unit shortage cost S0 which is set to be $30. 
Other parameter values for this case are assigned 
where α= 0.6, β = -5.5, R = 1% per time period, F0

= $15,000 per replenishment, P0 = $300, and H0 = $3 
during the planning horizon. <Table 2> gives the de-
tailed data of the replenishment schedule and the costs 
for this case. In the optimal schedule, the present 
worth of the minimal total cost is $2,564,492, the total 
quantity over the planning horizon is 8,918, the aver-
age unit cost (AUC) is $287.56, and the optimal num-
ber of replenishment cycles is four.

Table 2. The resulting replenishment schedule for 
Case 1

Cycle [s, e]    p*  F(s, p*, e) We Lot-size

1 [0, 6] 3.2233 355,575 355,575 1,134   

2 [6,  9] 6.7858 898,539 1,254,114 3,104   

3 [9, 11] 9.3373 697,013 1,951,127 2,477   

4 [11, 18] 11.4283 613,365 2,564,492 2,203

Case 2 : A new style of swimsuit is introduced to the 
market. The maximal accumulated demand   for the 
style is estimated to be 9,000 for the market, with the 
planning horizon H equalto 18 weeks. It is however 
assumed that when the shortage occurs, the customer’s 
sale will be lost, that is, shortages are not allowed. The 
shortage cost S0 is thus assigned with a very large val-
ue, in this case NT$10,000. Other parameter values for 
this case are assigned where α = 0.6, β = -5.5, R =
1% per time period, F0 = NT$15,000 per replenish-
ment, P0 = NT$300, and H0 = NT$3 during the plan-
ning horizon. <Table 3> gives the detailed data of the 
replenishment schedule and the costs for this case. In 
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the optimal schedule, the present worth of the minimal 
total cost is $2,581,890, the total quantity over the 
planning horizon is 8,919, the average unit cost (AUC) 
is $289.48, and the optimal number of replenishment 
cycles becomes five.

Table 3. The resulting replenishment schedule for 
Case 2

Cycle [s, e] p* F(s, p*, e) We Lot-size

1 [0, 5] 0.000 215,563 215,563 646   

2 [5, 7] 2.000 373,516 589,079 1,245   

3 [7, 9] 3.000 677,623 1,266,702 2,348   

4 [9,11] 4.000 699,323 1,966,025 2,477   

5 [11, 18] 5.000 615,865 2,581,890 2,203   

While case one requires four replenishment cycles, 
case two requires five. Interestingly that for case one, 
even with the shortage cost compounded from the oc-
currence of the shortage, itsaverage unit cost remains 
lower than that of case two. It is in fact understandable 
as the inventory holding cost for case two becomes 
much larger due to the no-shortage constraint. From a 
different perspective, because the solution space for 
inventory models allowing shortages is larger than that 
for inventory models disallowing shortages, the AUC 
of the former is always smaller than or equal to that of 
the latter.

Case 3 : A new kind of fashion athletic shoes is in-
troduced to the market. The maximal accumulated de-
mand   for the kind of fashion athletic shoes is esti-
mated to be 9,000 for the market, with the planning 
horizon H equalto 18 weeks. It is assumed that when 
the shortage occurs, customers will wait for certain 
time periodsto get the fashion athletic shoes only if 
price discounts are awarded. The price discount is 
compounded to the unit shortage cost S0 which is set to 
be $15. Other parameter values for this case are as-
signed where α= 0.8, β = -3.5, R = 1% per time peri-
od, F0 = $7,500 per replenishment, P0 = $150, and H0

= $1.5 during the planning horizon. <Table 4> gives 
the detailed data of the replenishment schedule and the 
costs for this case. In the optimal schedule, the present 
worth of the minimal total cost is $1,302,972 of which 
the total quantity over the planning horizon is 8,736, 
the average unit cost (AUC) is equal to $149.15, and 
theoptimal number of replenishment cycles is three. 
This case illustrates the resulting of a replenishment 

schedule with a fewer number and more non-uniform 
replenishment cycles.

Table 4. The resulting replenishment schedule for 
Case 3

Cycle [s, e] p* F(s, p*, e)  We Lot-size

1 [0, 3] 1.1396 306,895 306,895 1,984  

2 [3, 5] 3.4214 498,488 805,383 3,354  

3 [5, 18] 5.3845 497,589 1,302,972 3,398  

A sensitivity analysis is performed based on case 
one, where uncertain factors are studied for the effects 
of the variations on the replenishment plans. Two pa-
rameters, α and β, characterizing the demand pattern 
are taken into consideration. The sensitivity analysis of 
the logistic model of Case 1was performed with re-
spect to two parameters to determine if the proposed 
optimization procedure is sensitive to the departure 
from the estimates. Theaccumulated demand and the 
demand rate under various α and β values, while the 
rest of parameter values unchanged, are shown in 
<Figure 7>.

The optimal values of AUC (average unit cost) for 
the fixed Φ = { , α, β, R, P0,F0, H0, S0} is denoted 
by AUC0. The sensitivity of the optimum average unit 
cost (SAC) can be obtained by computing [(AUC/ 
AUC0)-1]*100. <Table 5> shows the results of the 
sensitivity analysis for varying α and β. 

Table 5. Numerical sensitive analysis with respect to 
α and β.

varying α AUC* SAC(%) varying β AUC* SAC(%)

0.525 294.54 2.43 -6.25 290.07 0.87 
0.550 290.57 1.05 -6.00 288.60 0.36 
0.575 288.31 0.26 -5.75 287.57 0.01 
0.600 287.56 0.00 -5.50 287.56 0.00 
0.625 289.05 0.52 -5.25 289.54 0.69 
0.650  291.81 1.48 -5.00 293.27 1.98 
0.675 295.59 2.79 -4.75 298.67 3.86 

The main findings observedfrom the above sensi-
tivity analysis are : 

(1) Varying α from 0.525 to 0.675 (± 12.5% of the 
original value 0.6), the percentage change in 
AUC ranges from 0.26% to 2.79%. This in-
dicates that the AUC from the optimal replenish-
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(1) Accumulated demand with various α (2) Demand rate with various α

(3) Accumulated demand with various β (4) Demand rate with various β
Figure 7. Theaccumulated demand and the demand rate under various α and β values

ment policy is not sensitive to the variation of α, 
that is, a demand model where demand grows at 
a sharper or a smoother pace than the prediction. 
In other words, if the actual parameter value of 
α is differentfrom the expected value, the value 
of ACU-the solution obtained by the WW ap-
proach-will not have a large variation.

(2) Varying β from -6.25 to -4.75 (± 13.6% of the 
original value -5.5), the percentage change in 
AUC ranges from 0.01% to 3.86%. This in-
dicates that the AUC from the optimal replenish-
ment policy is not sensitive to the variation of β. 
That is, the value of ACU is not sensitive to the 
variation of the model where demand starts at an 
earlier or a later point in time than the predicted.

5. Conclusion and Future Research

Traditional inventory planning models and techni-
ques mostly deal with products that have long life- 

cycles. The traditional assumption of constant demand 
for durable products is not suitable for modeling prod-
ucts with short life-cycles and subsequent solution 
approaches. In reality, the constant demand assump-
tion does not hold for high-tech products, seasonal 
products and fad products. In consequence of the imi-
tation effect, the number of buyers and the demand for 
the product are influenced by the previous turnouts, 
which can be modeled by the logistic model. In this re-
search, inventory replenishment problems based on the 
logistic demand model are formulated and solved to 
facilitate the management of products with short 
life-cycles. The logistic model bears properties that 
match closely with products of short life-cycles. 
Nevertheless, the model remains applicable for repre-
senting products of both long and short life-cycles. 
Historical data of the product or of a similar product 
can be used to estimate the parameters, α and β, for 
the model.

By using the WW approach, the replenishment quan-
tity is restricted to the accumulated demand in some 
consecutive integral periods. If the replenishment quan-



396 Ching-Ho Wang․Shih-Wei Lin․Shuo-Yan Chou․Chun-Hsiang Tsai

tity is restricted to be the accumulated demand of in-
tegral periods, the WW approach has already obtained 
the optimal solution. However, if the replenishment 
quantity is not restricted to be the accumulated de-
mand of integral periods, by using meta- heuristics 
such as SA and GA approaches, the resulting replen-
ishment quantity may be allocated so that the begin-
ning and the ending periods for the replenishment cy-
cle are fractional. Thus, if such a solution is to be ob-
tained, the requirement may be better fulfilled by us-
ing meta-heuristics.

This study focus on the assumption of the determin-
istic nature of the model, in which the point that real 
world demand, lead time and shortage back ordered 
being non-deterministic arewell taken. In the future, 
the probabilistic nature of real world will be consid-
ered in the developed model. Also the sales promotion 
can be taken into consideration in the developed model.
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