• Title/Summary/Keyword: rescue

Search Result 1,286, Processing Time 0.028 seconds

Accuracy of Body Mass Index-defined Obesity Status in US Firefighters

  • Jitnarin, Nattinee;Poston, Walker S.C.;Haddock, Christopher K.;Jahnke, Sara A.;Day, Rena S.
    • Safety and Health at Work
    • /
    • v.5 no.3
    • /
    • pp.161-164
    • /
    • 2014
  • Obesity is a significant problem affecting United States (US) firefighters. While body mass index (BMI) is widely used to diagnose obesity, its use for this occupational group has raised concerns about validity. We examined rates and types of misclassification of BMI-based obesity status compared to body fat percentage (BF%) and waist circumference (WC). Male career firefighters (N = 994) from 20 US departments completed all three body composition assessments. Mean BMI, BF%, and WC were $29kg/m^2$, 23%, and 97 cm, respectively. Approximately 33% and 15% of BF%- and WC-defined obese participants were misclassified as non-obese (false negatives) using BMI, while 8% and 9% of non-obese participants defined by BF% and WC standards were identified as obese (false positives) using BMI. When stratified by race/ethnicity, Pacific Islanders showed high rates of false positive misclassification. Precision in obesity classification would be improved by using WC along with BMI to determine firefighters' weight status.

Design and Control of Robot Arm for Inspection and Rescue Operations (재난 탐사 및 구조를 위한 로봇팔 설계 및 제어)

  • Kang, Jin-Il;Choi, Hyeung-Sik;Jun, Bong-Huan;Ji, Dae-Hyeong;Oh, Ji-Yoon;Kim, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.888-894
    • /
    • 2016
  • This paper presents the kinematic and dynamic analysis of the robot arm for inspection and rescue operations. The inspection robot arm has Pitch-Pitch-Pitch-Yaw motion for an optimal and stable view of the camera installed at the end of the manipulator. The rescue operation robot arm has Yaw-Pitch-Pitch-Roll motion to handle heavy tools. Additionally, both robot arms are waterproof, as they use the triple-layer O-ring. Furthermore, the dynamic equation including the damping force due to the mechanical seal for waterproofness was derived by using the Newton-Euler method. A control system using the ARM processor was developed and introduced in this paper, and its performance was verified through experiments.

Evaluation of Operation Efficiency in the Korean RCC/RSC Using DEA and Fuzzy-Logic (DEA와 퍼지추론을 이용한 RCC/RSC별 운영효율성 평가)

  • Jang Woon-Jae;Keum Jong-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.67-72
    • /
    • 2005
  • This paper aims to evaluates the operation efficiency with two inputs and four outputs with the use of DEA(Data Envelopment Analysis), a qualitative data analysis with the use of expert assessment in Korean RCC(Rescue Co-ordination Center)/RSC(Rescue Sub-Center). The tool for integrating heterogeneous data is model that applies fuzzy logic to decision support system In this paper, therefor, RCC/RSC evaluates the priority for operation efficiency. The result are found as order as Inchon, Mokpo, Jeju, Donghae, Busan, Pohang, Yosu, Sokcho, Tongyeong, Ulsan, Taean, Gunsan RSC.

  • PDF

Plan for the Development of a Standardized Dummy for Persons in Need of Rescue in a Confined Space (밀폐공간 구조 요구자를 위한 더미 표준화 개발 방안)

  • Choi, Seo-Yeon;Rie, Dong-Ho;Kim, Hyung-Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.99-105
    • /
    • 2016
  • This study was conducted to develop a dummy in an environment similar to the human body, to prepare a standard for evaluation and to present the process of the production in order to evaluate the performance of the robot that can detect the persons needing rescue in a confined space, who are difficult for fire-fighting officials to rescue in case of fire and disaster. As a result, a standard for evaluation was developed and standardized into four parts 'Normal,' 'Risk Stage 1,' 'Risk Stage 2' and 'Risk Stage 3'based on the number of breath cycles, carbon dioxide concentration, core temperature and criteria for hearing to recognize the voice. In addition, in order to produce a dummy, fever, breathing capacity and voice output function were compared and analyzed. This study has significance that it built up basic data of the method of producing the actual dummy, by presenting characteristics and controlling methods using the waterproof insulation heating coil for the function, solenoid valve for the consecutive output of breathing capacity and USB program sound board for voice output.

Study of medium long-range identification and tracking victims in offshore using GPS and RF technology (GPS와 RF 기술을 이용한 연안 해상에서의 중장거리 조난자 식별 및 추적에 관한 연구)

  • Song, Young-seob;Chung, Kh;Kim, Yk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.310-313
    • /
    • 2016
  • Recently we have been facing a number of safety accidents under various environments. Currently, if the people encountered a risk during maritime activities in offshore, rescue efforts have been made only rely on the human perspective and experience. As a result, there are a lot of deaths and disappearances accidents caused by accidents at offshore. These accidents are mainly seen to occur because of the delay in the rescue. In order to reduce the accident according to this rescue delay, we carried out a study on the designing a wireless transmitter and receiver devices that can be used easily with latest IoT technologies including GPS, RF, LoRa wireless communication technology for a rapid rescue.

  • PDF

Automatic Extraction of Rescue Requests from Drone Images: Focused on Urban Area Images (드론영상에서 구조요청자 자동추출 방안: 도심지역 촬영영상을 중심으로)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.37-44
    • /
    • 2019
  • In this study, we propose the automatic extraction method of Rescue Requests from Drone Images. A central object is extracted from each image by using central object extraction method[7] before classification. A central object in an images are defined as a set of regions that is lined around center of the image and has significant texture distribution against its surrounding. In this case of artificial objects, edge of straight line is often found, and texture is regular and directive. However, natural object's case is not. Such characteristics are extracted using Edge direction histogram energy and texture Gabor energy. The Edge direction histogram energy calculated based on the direction of only non-circular edges. The texture Gabor energy is calculated based on the 24-dimension Gebor filter bank. Maximum and minimum energy along direction in Gabor filter dictionary is selected. Finally, the extracted rescue requestor object areas using the dominant features of the objects. Through experiments, we obtain accuracy of more than 75% for extraction method using each features.

Distributed control system architecture for deep submergence rescue vehicles

  • Sun, Yushan;Ran, Xiangrui;Zhang, Guocheng;Wu, Fanyu;Du, Chengrong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.274-284
    • /
    • 2019
  • The control architectures of Chuan Suo (CS) deep submergence rescue vehicle are introduced. The hardware and software architectures are also discussed. The hardware part adopts a distributed control system composed of surface and underwater nodes. A computer is used as a surface control machine. Underwater equipment is based on a multi-board-embedded industrial computer with PC104 BUS, which contains IO, A/D, D/A, eight-channel serial, and power boards. The hardware and software parts complete data transmission through optical fibers. The software part involves an IPC of embedded Vxworks real-time operating system, upon which the operation of I/O, A/D, and D/A boards and serial ports is based on; this setup improves the real-time manipulation. The information flow is controlled by the software part, and the thrust distribution is introduced. A submergence vehicle heeling control method based on ballast water tank regulation is introduced to meet the special heeling requirements of the submergence rescue vehicle during docking. Finally, the feasibility and reliability of the entire system are verified by a pool test.

Validation of OpenDrift-Based Drifter Trajectory Prediction Technique for Maritime Search and Rescue

  • Ji-Chang Kim;Dae, Hun, Yu;Jung-eun Sim;Young-Tae Son;Ki-Young Bang;Sungwon Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.145-157
    • /
    • 2023
  • Due to a recent increase in maritime activities in South Korea, the frequency of maritime distress is escalating and poses a significant threat to lives and property. The aim of this study was to validate a drift trajectory prediction technique to help mitigate the damages caused by maritime distress incidents. In this study, OpenDrift was verified using satellite drifter data from the Korea Hydrographic and Oceanographic Agency. OpenDrift is a Monte-Carlo-based Lagrangian trajectory modeling framework that allows for considering leeway, an important factor in predicting the movement of floating marine objects. The simulation results showed no significant differences in the performance of drift trajectory prediction when considering leeway using four evaluation methods (normalized cumulative Lagrangian separation, root mean squared error, mean absolute error, and Euclidean distance). However, leeway improved the performance in an analysis of location prediction conformance for maritime search and rescue operations. Therefore, the findings of this study suggest that it is important to consider leeway in drift trajectory prediction for effective maritime search and rescue operations. The results could help with future research on drift trajectory prediction of various floating objects, including marine debris, satellite drifters, and sea ice.

Hyperspectral Image Classification using EfficientNet-B4 with Search and Rescue Operation Algorithm

  • S.Srinivasan;K.Rajakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.213-219
    • /
    • 2023
  • In recent years, popularity of deep learning (DL) is increased due to its ability to extract features from Hyperspectral images. A lack of discrimination power in the features produced by traditional machine learning algorithms has resulted in poor classification results. It's also a study topic to find out how to get excellent classification results with limited samples without getting overfitting issues in hyperspectral images (HSIs). These issues can be addressed by utilising a new learning network structure developed in this study.EfficientNet-B4-Based Convolutional network (EN-B4), which is why it is critical to maintain a constant ratio between the dimensions of network resolution, width, and depth in order to achieve a balance. The weight of the proposed model is optimized by Search and Rescue Operations (SRO), which is inspired by the explorations carried out by humans during search and rescue processes. Tests were conducted on two datasets to verify the efficacy of EN-B4, with Indian Pines (IP) and the University of Pavia (UP) dataset. Experiments show that EN-B4 outperforms other state-of-the-art approaches in terms of classification accuracy.

A Study of Whole Body Kinematic Control for a Rescue Robot (구난로봇을 위한 전신 기구학 제어 연구)

  • Hong, Seongil;Lee, Won Suk;Kang, Sin Cheon;Kang, Youn Sik;Park, Yong Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.853-860
    • /
    • 2014
  • This paper introduces a Korean rescue robot and presents a whole body kinematic control strategy. The mission of the rescue robot is to move and lift patients or soldiers with impaired mobility in the battlefields, hospitals and hazardous environments. In order for a robot to rescue and assist humans, reliable mobility in various environments, large load carrying capacity, and dextrous manipulability are required. For these objects the robot has variable configuration mobile platform with tracks, dual arm manipulator, and two types of grippers. The electric actuators provide the strength to lift a wounded soldier up to 120 kg using whole body joints. To control the robot with multi degree of freedom, we need to synthesize complex whole-body behaviors, and to manage multiple task primitives systematically. We are to present a whole body kinematic control methodology, and demonstrate its effectiveness through numerical simulations.