• 제목/요약/키워드: representation learning

검색결과 513건 처리시간 0.028초

A Review of Computational Phantoms for Quality Assurance in Radiology and Radiotherapy in the Deep-Learning Era

  • Peng, Zhao;Gao, Ning;Wu, Bingzhi;Chen, Zhi;Xu, X. George
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.111-133
    • /
    • 2022
  • The exciting advancement related to the "modeling of digital human" in terms of a computational phantom for radiation dose calculations has to do with the latest hype related to deep learning. The advent of deep learning or artificial intelligence (AI) technology involving convolutional neural networks has brought an unprecedented level of innovation to the field of organ segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both real-time Monte Carlo simulations and AI-based image segmentation applications. These advancements provide the feasibility of creating three-dimensional (3D) geometric details of the human anatomy from tomographic imaging and performing Monte Carlo radiation transport simulations using increasingly fast and inexpensive computers. This review first introduces the history of three types of computational human phantoms: stylized medical internal radiation dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation (BREP) deformable phantoms. Then, the development of a person-specific phantom is demonstrated by introducing AI-based organ autosegmentation technology. Next, a new development in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments) to problems in radiation protection, imaging, and radiotherapy are presented from research projects performed by students at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China (USTC). Finally, this review discusses challenges and future research opportunities. We found that, owing to the latest computer hardware and AI technology, computational human body models are moving closer to real human anatomy structures for accurate radiation dose calculations.

비지도학습의 딥 컨벌루셔널 자동 인코더를 이용한 셀 이미지 분류 (Cell Images Classification using Deep Convolutional Autoencoder of Unsupervised Learning)

  • 칼렙;박진혁;권오준;이석환;권기룡
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.942-943
    • /
    • 2021
  • The present work proposes a classification system for the HEp-2 cell images using an unsupervised deep feature learning method. Unlike most of the state-of-the-art methods in the literature that utilize deep learning in a strictly supervised way, we propose here the use of the deep convolutional autoencoder (DCAE) as the principal feature extractor for classifying the different types of the HEp-2 cell images. The network takes the original cell images as the inputs and learns to reconstruct them in order to capture the features related to the global shape of the cells. A final feature vector is constructed by using the latent representations extracted from the DCAE, giving a highly discriminative feature representation. The created features will be fed to a nonlinear classifier whose output will represent the final type of the cell image. We have tested the discriminability of the proposed features on one of the most popular HEp-2 cell classification datasets, the SNPHEp-2 dataset and the results show that the proposed features manage to capture the distinctive characteristics of the different cell types while performing at least as well as the actual deep learning based state-of-the-art methods.

규칙 구성자와 연결 구성자를 이용한 혼합형 행동 진화 모델 (Hybrid Behavior Evolution Model Using Rule and Link Descriptors)

  • 박사준
    • 지능정보연구
    • /
    • 제12권3호
    • /
    • pp.67-82
    • /
    • 2006
  • 가상 로봇의 행동 진화를 위해서 규칙 구성자와 연결 구성자를 구성하여 분류 규칙과 진화 신경망을 형성하는 혼합형 행동 진화 모델(Hybrid Behavior Evolution Model)을 제안한다. 본 모델에서는 행동 지식을 두 수준에서 표현하였다. 상위 수준에서는 규칙 구성자와 연결 구성자를 구성하여 표현력을 향상시켰다. 하위 수준에서는 행동 지식을 비트 스트링 형태의 염색체로 표현하여, 이들 염색체를 대상으로 유전자 연산을 적용하여 학습을 수행시켰다. 적합도가 최적인 염색체를 추출하여 가상 로봇을 구성하였다. 구성된 가상 로봇은 주변 상황을 인식하여 입력 정보와 규칙 정보를 이용하여 패턴을 분류하였고, 그 결과를 신경망에서 처리하여 행동하였다. 제안된 모델을 평가하기 위해서 HBES(Hybrid Behavior Evolution System)를 개발하여 가상 로봇의 먹이 수집 문제에 적용하였다. 제안한 시스템을 실험한 결과, 동일한 조건의 진화 신경망보다 학습 시간이 적게 소요되었다. 그리고, 규칙이 적합도 향상에 주는 영향을 평가하기 위해서, 학습이 완료된 염색체들에 대해서 규칙을 적용한 것과, 그렇지 않은 것을 각각 수행하여 적합도를 측정하였다. 그 결과, 규칙을 적용하지 않으면 적합도가 저하되는 것을 확인하였다. 제안된 모델은 가상 로봇의 행동 진화에 있어서 기존의 진화 신경망 방식 보다 학습 성능이 우수하고 규칙적인 행동을 수행하는 것을 확인하였다.

  • PDF

'컴퓨터와 수학교육' 학습-지도 환경에 관한 연구 (A Study on Learning and Teaching Environments for Computers and Mathematics Education)

  • 김화경
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제16권4호
    • /
    • pp.367-386
    • /
    • 2006
  • 본 논문에서는 구성주의 교육관의 관점에서 컴퓨터와 수학교육의 관계를 바라보는 '컴퓨터와 수학교육'에 대해 다룬다. '컴퓨터와 수학교육'은 그 필요성에 비해 최근까지 원활히 이루어지지 못했다. 그 이유는 먼저 그 구성요소들 사이의 관계가 명확하게 이해되지 못하였고, 이에 따라 구성주의에 대한 명확한 실천적 전략이 부족하였고, 서로 다른 컴퓨터 하드웨어-소프트웨어 환경들이 유기적으로 연결되지 못했기 때문이다. 이에 바람직한 '컴퓨터와 수학교육'을 위해서는 먼저 구성요소들 사이의 관계를 이해하고, 이를 바탕으로 '컴퓨터와 수학교육'의 실천적 설계 전략을 모색하며, 개별적인 소프트웨어 환경을 마이크로월드의 관점에서 통합적으로 연계시켜야 할 필요가 있다. 본 논문에서는 이러한 문제의식을 가지고 '컴퓨터와 수학교육'의 구성요소인 학생, 수학, 컴퓨터를 중심으로 관계된 이론을 고찰하여 각각에 대한 구체적 실천적 전략으로 구성주의. 함수화, 인터넷 상호작용의 원리를 도출한다. 또한 역사적으로 가장 성공적이고 대표적인 '컴퓨터와 수학교육' 환경인 Logo와 동적 기하 환경(DGS)을 이러한 관점으로 분석 고찰하여, Logo를 행동 문자 명령과 대수적 문자조작을 통해 재귀적 패턴의 탐구가 가능한 환경으로 발전시키고, 점들 사이의 기하적 관계를 다루던 DGS를 관계식과 대수기하적 탐구가 가능한 환경으로 설계, 구현한다. 나아가 Logo와 DGS의 이러한 수준 상승이 가지는 수학교육적 의미를 고찰하고, 타일 및 전개도 등의 새로운 대상을 도입하여 통합 마이크로월드를 구현한다. 본 논문에서는 Logo와 DGS, 그리고 통합 환경을 하나의 JavaMAL 인터넷 환경 속에서 통합 설계하고 이를 구현하며 나아가 그 의미를 논의한다.

  • PDF

리뷰 데이터와 제품 정보를 이용한 멀티모달 감성분석 (Multimodal Sentiment Analysis Using Review Data and Product Information)

  • 황호현;이경찬;유진이;이영훈
    • 한국전자거래학회지
    • /
    • 제27권1호
    • /
    • pp.15-28
    • /
    • 2022
  • 최근 의류 등의 특정 쇼핑몰의 온라인 시장이 크게 확대되면서, 사용자의 리뷰를 활용하는 것이 주요한 마케팅 방안이 되었다. 이를 이용한 감성분석에 대한 연구들도 많이 진행되고 있다. 감성분석은 사용자의 리뷰를 긍정과 부정 그리고 필요에 따라서 중립으로 분류하는 방법이다. 이 방법은 크게 머신러닝 기반의 감성분석과 사전기반의 감성분석으로 나눌 수 있다. 머신러닝 기반의 감성분석은 사용자의 리뷰 데이터와 그에 대응하는 감성 라벨을 이용해서 분류 모델을 학습하는 방법이다. 감성분석 분야의 연구가 발전하면서 리뷰와 함께 제공되는 이미지나 영상 데이터 등을 함께 고려하여 학습하는 멀티모달 방식의 모델들이 연구되고 있다. 리뷰 데이터에서 제품의 카테고리와 사용자별로 사용되는 단어 등의 특징이 다르다. 따라서 본 논문에서는 리뷰데이터와 제품 정보를 동시에 고려하여 감성분석을 진행한다. 리뷰를 분류하는 모델로는 기본 순환신경망 구조에서 Gate 방식을 도입한 Gated Recurrent Unit(GRU), Long Short-Term Memory(LSTM) 그리고 Self Attention 기반의 Multi-head Attention 모델, Bidirectional Encoder Representation from Transformer(BERT)를 사용해서 각각 성능을 비교하였다. 제품 정보는 모두 동일한 Multi-Layer Perceptron(MLP) 모델을 이용하였다. 본 논문에서는 사용자 리뷰를 활용한 Baseline Classifier의 정보와 제품 정보를 활용한 MLP모델의 결과를 결합하는 방법을 제안하며 실제 데이터를 통해 성능의 우수함을 보인다.

불확실성이 높은 의사결정 환경에서 SR 기반 강화학습 알고리즘의 성능 분석 (Evaluating SR-Based Reinforcement Learning Algorithm Under the Highly Uncertain Decision Task)

  • 김소현;이지항
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권8호
    • /
    • pp.331-338
    • /
    • 2022
  • 차기 상태 천이 표상(Successor representation, SR) 기반 강화학습 알고리즘은 두뇌에서 발현되는 신경과학적 기전을 바탕으로 발전해온 강화학습 모델이다. 해마에서 형성되는 인지맵 기반의 환경 구조 정보를 활용하여, 변화하는 환경에서도 빠르고 유연하게 학습하고 의사결정 가능한 자연 지능 모사형 강화학습 방법으로, 불확실한 보상 구조 변화에 대해 빠르게 학습하고 적응하는 강인한 성능을 보이는 것으로 잘 알려져 있다. 본 논문에서는 표면적인 보상 구조가 변화하는 환경뿐만 아니라, 상태 천이 확률과 같은 환경 구조 내 잠재 변수가 보상 구조 변화를 유발하는 상황에서도 SR-기반 강화학습 알고리즘이 강인하게 반응하고 학습할 수 있는지 확인하고자 한다. 성능 확인을 위해, 상태 천이에 대한 불확실성과 이로 인한 보상 구조 변화가 동시에 나타나는 2단계 마르코프 의사결정 환경에서, 목적 기반 강화학습 알고리즘에 SR을 융합한 SR-다이나 강화학습 에이전트 시뮬레이션을 수행하였다. 더불어, SR의 특성을 보다 잘 관찰하기 위해 환경을 변화시키는 잠재 변수들을 순차적으로 제어하면서 기존의 환경과 비교하여 추가적인 실험을 실시하였다. 실험 결과, SR-다이나는 환경 내 상태 천이 확률 변화에 따른 보상 변화를 제한적으로 학습하는 행동을 보였다. 다만 기존 환경에서의 실험 결과와 비교했을 때, SR-다이나는 잠재 변수 변화로 인한 보상 구조 변화를 빠르게 학습하지는 못하는 것으로 확인 되었다. 본 결과를 통해 환경 구조가 빠르게 변화하는 환경에서도 강인하게 동작할 수 있는 SR-기반 강화학습 에이전트 설계를 기대한다.

효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석 (Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System)

  • 김수인;전영진;이상범;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.519-524
    • /
    • 2023
  • 해싱 기반 이미지 검색에서는 조작된 이미지의 해시코드가 원본 이미지와 달라 동일한 이미지 검색이 어렵다. 본 논문은 이미지의 질감, 모양, 색상 등 특징 정보로부터 지각적 해시코드를 생성하는 자기 감독 기반 딥해싱 모델을 제안하고 평가한다. 비교 모델은 오토인코더 기반 변분 추론 모델들이며, 인코더는 완전 연결 계층, 합성곱 신경망과 트랜스포머 모듈 등으로 설계된다. 제안된 모델은 기하학적 패턴을 추출하고 이미지 내 위치 관계를 활용하는 SimAM 모듈을 포함하는 변형 추론 모델이다. SimAM은 뉴런과 주변 뉴런의 활성화 값을 이용한 에너지 함수를 통해 객체 또는 로컬 영역이 강조된 잠재 벡터를 학습할 수 있다. 제안 방법은 표현 학습 모델로 고차원 입력 이미지의 저차원 잠재 벡터를 생성할 수 있으며, 잠재 벡터는 구분 가능한 해시코드로 이진화 된다. CIFAR-10, ImageNet, NUS-WIDE 등 공개 데이터셋의 실험 결과로부터 제안 모델은 비교 모델보다 우수하며, 지도학습 기반 딥해싱 모델과 동등한 성능이 분석되었다.

Unsupervised Real-time Obstacle Avoidance Technique based on a Hybrid Fuzzy Method for AUVs

  • Anwary, Arif Reza;Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.82-86
    • /
    • 2008
  • The article presents ARTMAP and Fuzzy BK-Product approach underwater obstacle avoidance for the Autonomous underwater Vehicles (AUV). The AUV moves an unstructured area of underwater and could be met with obstacles in its way. The AUVs are equipped with complex sensorial systems like camera, aquatic sonar system, and transducers. A Neural integrated Fuzzy BK-Product controller, which integrates Fuzzy logic representation of the human thinking procedure with the learning capabilities of neural-networks (ARTMAP), is developed for obstacle avoidance in the case of unstructured areas. In this paper, ARTMAP-Fuzzy BK-Product controller architecture comprises of two distinct elements, are 1) Fuzzy Logic Membership Function and 2) Feed-Forward ART component. Feed-Forward ART component is used to understanding the unstructured underwater environment and Fuzzy BK-Product interpolates the Fuzzy rule set and after the defuzzyfication, the output is used to take the decision for safety direction to go for avoiding the obstacle collision with the AUV. An on-line reinforcement learning method is introduced which adapts the performance of the fuzzy units continuously to any changes in the environment and make decision for the optimal path from source to destination.

삼각함수에 관한 오류 유형 분석과 그 지도 방법 (Analysis of Misunderstood Types Relate to Trigonometric Function and Its Teaching Method)

  • 강윤수;박수정
    • 한국학교수학회논문집
    • /
    • 제6권1호
    • /
    • pp.101-113
    • /
    • 2003
  • 본 연구의 목적은 삼각함수에 관한 학생들의 오개념을 분석해보고 삼각함수 개념 지도 개선방안의 하나로 컴퓨터를 활용한 지도 방법을 고안하는 것이다. 이를 위해, 이미 삼각함수를 배운 학생들을 대상으로 삼각함수 개념과 관련된 학생들의 이해도 검사를 실시하여 호도법 활용과 삼각함수그래프와 관련된 학생들의 오개념을 분석하였다. 분석 결과를 바탕으로 GSP를 활용한 학생 주도형 교수-학습 자료를 고안하여, 삼각함수그래프 지도과정에 투입하였다. 그 결과, 컴퓨터 조작에 의한 역동적인 탐구과정이 학생들이 호도법과 삼각함수그래프를 이해하는데 도움을 줄 수 있음을 확인하였다.

  • PDF

Statistical Inference in Non-Identifiable and Singular Statistical Models

  • Amari, Shun-ichi;Amari, Shun-ichi;Tomoko Ozeki
    • Journal of the Korean Statistical Society
    • /
    • 제30권2호
    • /
    • pp.179-192
    • /
    • 2001
  • When a statistical model has a hierarchical structure such as multilayer perceptrons in neural networks or Gaussian mixture density representation, the model includes distribution with unidentifiable parameters when the structure becomes redundant. Since the exact structure is unknown, we need to carry out statistical estimation or learning of parameters in such a model. From the geometrical point of view, distributions specified by unidentifiable parameters become a singular point in the parameter space. The problem has been remarked in many statistical models, and strange behaviors of the likelihood ratio statistics, when the null hypothesis is at a singular point, have been analyzed so far. The present paper studies asymptotic behaviors of the maximum likelihood estimator and the Bayesian predictive estimator, by using a simple cone model, and show that they are completely different from regular statistical models where the Cramer-Rao paradigm holds. At singularities, the Fisher information metric degenerates, implying that the cramer-Rao paradigm does no more hold, and that he classical model selection theory such as AIC and MDL cannot be applied. This paper is a first step to establish a new theory for analyzing the accuracy of estimation or learning at around singularities.

  • PDF