Since the widespread adoption of deep-learning and related distributed representation, there have been substantial advancements in part-of-speech (POS) tagging for many languages. When training word representations, morphology and shape are typically ignored, as these representations rely primarily on collecting syntactic and semantic aspects of words. However, for tasks like POS tagging, notably in morphologically rich and resource-limited language environments, the intra-word information is essential. In this study, we introduce a deep neural network (DNN) for POS tagging that learns character-level word representations and combines them with general word representations. Using the proposed approach and omitting hand-crafted features, we achieve 90.47%, 80.16%, and 79.32% accuracy on our own dataset for three morphologically rich languages: Uyghur, Uzbek, and Kyrgyz. The experimental results reveal that the presented character-based strategy greatly improves POS tagging performance for several morphologically rich languages (MRL) where character information is significant. Furthermore, when compared to the previously reported state-of-the-art POS tagging results for Turkish on the METU Turkish Treebank dataset, the proposed approach improved on the prior work slightly. As a result, the experimental results indicate that character-based representations outperform word-level representations for MRL performance. Our technique is also robust towards the-out-of-vocabulary issues and performs better on manually edited text.
사전학습 언어모델을 개선하여 고품질의 문장 표현(sentence representation)을 도출하기 위한 다양한 대조 학습 방법에 대한 연구가 진행되고 있다. 그러나, 대부분의 대조학습 방법들은 문장 쌍의 관계만을 고려하며, 문장 간의 유사 정도를 파악하는데는 한계가 있어서 근본적인 대조 학습 목표를 저해하였다. 이에 최근 삼중항 손실 (triplet loss) 함수를 도입하여 문장의 상대적 유사성을 파악하여 대조학습의 성능을 개선한 연구들이 제안되었다. 그러나 많은 연구들이 영어를 기반으로한 사전학습 언어모델을 대상으로 하였으며, 한국어 기반의 비지도 대조학습에 대한 삼중항 손실 함수의 실효성 검증 및 분석은 여전히 부족한 실정이다. 본 논문에서는 이러한 방법론이 한국어 비지도 대조학습에서도 유효한지 면밀히 검증하였으며, 다양한 평가 지표를 통해 해당 방법론의 타당성을 확인하였다. 본 논문의 결과가 향후 한국어 문장 표현 연구 발전에 기여하기를 기대한다.
본 연구는 초등 수학 교과서와 관련하여 입체도형의 지도와 관련된 교수학적 시사점을 제시하고자 하였다. 국정 1종 및 검정 10종의 교과서를 분석하였으며 각기둥과 각뿔 단원 내 수학적 개념의 정의와 시각적으로 표현된 예시를 분석하였다. 분석 결과, 동일한 교육과정이 반영되었음에도 불구하고 수학적 개념의 정의 방법 및 내용이 다르게 나타났다. 또한, 각기둥과 각뿔을 학습하는 과정에서 다양한 형태로 표현된 시각적 예시가 제공되었다. 본 연구의 결과를 바탕으로 수학적 개념의 정의를 이해하고 학생에게 적절한 방식으로 지도할 필요가 있으며 시각적 예시를 제시하는 과정에서 각 차시의 목표 및 활동의 목표를 고려하여야 한다는 시사점을 도출하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권5호
/
pp.1163-1185
/
2024
With the sharp increase in the volume of literature data, researchers must spend considerable time and energy locating desired papers. A paper recommendation is the means necessary to solve this problem. Unfortunately, the large amount of data combined with sparsity makes personalizing papers challenging. Traditional matrix decomposition models have cold-start issues. Most overlook the importance of information and fail to consider the introduction of noise when using side information, resulting in unsatisfactory recommendations. This study proposes a paper recommendation method (PR-SLSMF) using document-level representation learning with citation-informed transformers (SPECTER) and low-rank and sparse matrix factorization; it uses SPECTER to learn paper content representation. The model calculates the similarity between papers and constructs a weighted heterogeneous information network (HIN), including citation and content similarity information. This method combines the LSMF method with HIN, effectively alleviating data sparsity and cold-start issues and avoiding topic drift. We validated the effectiveness of this method on two real datasets and the necessity of adding side information.
최근 다양한 방송 및 영상 분야에서 사람의 행동을 인식하여는 연구들이 많이 이루어지고 있다. 영상은 다양한 형태를 가질 수 있기 때문에 제약된 환경에서 유용한 템플릿 방법들보다 특징점에 기반한 연구들이 실제 사용자 환경에서 더욱 관심을 받고 있다. 특징점 기반의 연구들은 영상에서 움직임이 발생하는 지점들을 찾아내어 이를 3차원 패치들로 생성한다. 이를 이용하여 영상의 움직임을 히스토그램에 기반한 descriptor(서술자)로 표현하고 학습기반의 판별기로 최종적으로 영상내에 존재하는 행동들을 인식하였다. 그러나 단일 판별기로는 다양한 행동을 인식하기에 어려움이 있다. 따라서 이러한 문제를 개선하기 위하여 최근에 다중 판별기를 활용한 연구들이 영상 판별 및 물체 검출 영역에서 사용되고 있다. 따라서 본 논문에서는 행동 인식을 위하여 support vector machine과 sparse representation을 이용한 decision-level fusion 방법을 제안하고자 한다. 제안된 논문의 방법은 영상에서 특징점 기반의 descriptor를 추출하고 이를 각각의 판별기를 통하여 판별 결과들을 획득한다. 이 후 학습단계에서 획득된 가중치를 활용하여 각 결과들을 융합하여 최종 결과를 도출하였다. 본 논문에 실험에서 제안된 방법은 기존의 융합 방법보다 높은 행동 인식 성능을 보여 주었다.
개체명 인식이란 문서 내에서 인명, 기관명, 지명, 시간, 날짜 등 고유한 의미를 가지는 개체명을 추출하여 그 종류를 결정하는 것을 말한다. 최근 개체명 인식 연구에서 가장 우수한 성능을 보여주고 있는 모델은 Bidirectional LSTM CRFs 모델이다. 이러한 LSTM 기반의 딥 러닝 모델은 입력이 되는 단어 표상에 의존적이다. 따라서 입력이 되는 단어를 잘 표현하기 위하여 단어 표상을 확장하는 방법에 대한 연구가 많이 진행되어지고 있다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs모델을 사용하고, 그 입력으로 사용되는 단어 표상을 확장하기 위해 사전 학습된 단어 임베딩 벡터, 품사 임베딩 벡터, 음절 기반에서 확장된 단어 임베딩 벡터, 그리고 개체명 사전 자질 벡터를 사용한다. 최종 단어 표상 확장 결과 사전 학습된 단어 임베딩 벡터만 사용한 것 보다 8.05%p의 성능 향상을 보였다.
선택과 재생산을 특징으로 하는 계통적 학습에서 유전자 프로그램이 가지는 긴 설계시간/높은 계산노력/낮은 계산효율을 극복하고자, 이 논문은 XML에 기반을 둔 유전적 표현 방법을 제안한다. 이 방법에서 유전자 프로그램과 유전자 연산은 기성 DOM 파서의 API 호출에 의하여 관리되기 때문에, 유전자 프로그램을 설계하는데 소비되는 시간이 상당히 단축되는 특징이 있다. 또 표준 XML 스키마를 기반으로 의미적으로 올바른 유전자 프로그램만을 다루기 때문에 탐색공간과 계산노력이 감소된다. 그리고 이형 분산 컴퓨팅 환경에서 유전자 프로그램의 이주에 적합한 시스템 및 형식인 XML을 사용하기 때문에 유전자 프로그램이 병렬적으로 수행될 수 있고, 이에 따라 계산효율이 향상된다. 제안된 방법의 검증을 위하여 포식자-피식자 문제에서 다중 에이전트의 사회적 행동의 진화에 적용한 결과, 유전자 프로그램에 대한 계산시간이 단축됨을 .보인다
차량인식은 차량 후보영역 검출단계와 검출된 후보 영역에서 특징을 기반으로 차량을 검증하는 차량 검증단계로 나누어진다. 선형 변환 방식의 특징은 차원 감소 효과와 통계적인 특징을 지니게 되어, 이동이나 회전에 강인한 특성을 갖는다. 선형 변환 방식 중 비음수행렬분해(Non-negative Matrix Factorization, NMF)는 부분 기반 표현 방식으로 차량의 국소적인 특징을 기저벡터로 사용하여 희소성을 갖는 특징을 추출할 수 있기 때문에 도심영상에서 발생하는 차폐 영역에 따른 인식률 저하를 방지할 수 있다. 본 논문에서는 차량 인식에 적합한 NMF 특징 추출 방법을 제안하고, 인식률을 검증하였다. 또한 희소성 제약 조건을 이용하여 기저 벡터에 희소성을 가지는 SNMF(Sparse NMF)와 LVQ2(Learning Vector Quantization) 신경 회로망을 결합하여 차폐 영역에 대한 차량 인식 효율을 기존의 NMF를 이용한 방법과 비교하였다. NMF를 이용하는 특징은 차량이 혼재되어 차폐 영역이 빈번히 발생하는 도심에서도 강건한 특징임을 보였다.
이 연구는 화산과 지진 단원의 수업에 GeoMapApp을 활용한 학습 자료를 적용하고, 공간 능력이 서로 다른 초등학생들이 인지한 공간 개념, 표현한 공간적 표상의 도구, 지형 구조를 표현하는 데 적용한 공간적 추론을 추출하여 공간적 사고의 과정을 분석하였다. 공간 능력 상위 집단 학생들은 인지한 공간 개념 정보를 수평 거리에 따라 구간을 나누어 화산과 지진의 지형 구조에 관한 심리적 이미지를 형성하는 내적 공간 표상을 활용하거나, 인식한 공간 개념을 그대로 연결하는 공간적 추론의 사례를 보였다. 또한, 지진 자료를 보고 공간 개념을 변형하여 공간적 추론을 수행하는 예도 있었다. 공간 능력 하위 집단 학생들은 공간 개념을 직접 지형 구조로 연결하는 공간적 추론을 보이거나, 공간 개념을 부분적으로 인식하여 지형을 파악하는 공간적 추론 사례를 보였다. 연구 결과를 근거로 초등학생들이 GeoMapApp 자료에서 거리, 높이, 깊이와 같은 공간 개념을 정확히 인식해야 더 나은 공간적 사고를 구현할 수 있음을 밝혔다.
본 연구는 삼각함수와 관련된 과제를 통해 고등학교 학생들의 함수 개념 이해 정도를 Hitt(1998)의 층위 분석을 통해 살펴보았다. 우선 학생들의 함수 이해 정도를 층위 분석을 통해 단계를 구분한 후 이해 관점을 과정과 대상 관점으로 다시 분류하였다. 그 결과 고등학교 학생들의 함수 개념 이해의 정도 층위는 3단계에서 불완전성을 보였다. 그리고 함수의 이해의 관점은 그래프 해석에서 과정 관점이 주를 이루고 있으며 대수적 표상의 조작이 중요시되고 있음을 알 수 있었다. 이러한 결과를 바탕으로 삼각함수를 다양한 관점으로 이해할 수 있는 교수-학습 방법에 대한 연구와 함께 문제 해결과 그에 따른 표상 체계 사이의 일관성이 유지되는 함수 개념 이해 층위 5단계에 도달할 수 있는 수업모델의 연구가 필요할 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.