

www.kips.or.kr Copyright© 2023 KIPS

Improved Character-Based Neural Network for POS

Tagging on Morphologically Rich Languages

Samat Ali and Alim Murat*

Abstract

Since the widespread adoption of deep-learning and related distributed representation, there have been

substantial advancements in part-of-speech (POS) tagging for many languages. When training word

representations, morphology and shape are typically ignored, as these representations rely primarily on

collecting syntactic and semantic aspects of words. However, for tasks like POS tagging, notably in

morphologically rich and resource-limited language environments, the intra-word information is essential. In

this study, we introduce a deep neural network (DNN) for POS tagging that learns character-level word

representations and combines them with general word representations. Using the proposed approach and

omitting hand-crafted features, we achieve 90.47%, 80.16%, and 79.32% accuracy on our own dataset for three

morphologically rich languages: Uyghur, Uzbek, and Kyrgyz. The experimental results reveal that the

presented character-based strategy greatly improves POS tagging performance for several morphologically rich

languages (MRL) where character information is significant. Furthermore, when compared to the previously

reported state-of-the-art POS tagging results for Turkish on the METU Turkish Treebank dataset, the proposed

approach improved on the prior work slightly. As a result, the experimental results indicate that character-based

representations outperform word-level representations for MRL performance. Our technique is also robust

towards the-out-of-vocabulary issues and performs better on manually edited text.

Keywords

Character Representation, Deep Neural Network, Morphologically Rich Language, POS Tagging

1. Introduction

Part-of-speech (POS) tagging is a crucial natural language processing (NLP) topic that intends to assign

POS tags to each word in a phrase. Generally, a POS is considered as a grammatical classification that

includes verbs, adjectives, adverbs, noun, etc. It serves as a preliminary task for performing tasks such as

chunking, dependency parsing, named entity recognition on any language. POS tagging on the most used

languages, like English and Chinese have seen dramatic improvements with the aid of recent deep

learning techniques. Meanwhile, the rapid advancement in the Web and social media have also led to an

increase in demand for highly accurate POS tagging for more minority languages that are low-resource

and morphologically complex.

Minority languages such as Uyghur, Uzbek and Kyrgyz widely used in Xinjiang and Central Asia and

have similar morphology, and they are typical inflectional language that produces various forms of words.

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received September 1, 2022; first revision October 17, 2022; accepted October 29, 2022.
*Corresponding Author: Alim Murat (a.murat@xjnu.edu.cn)

School of Computer Science Technology, Xinjiang Normal University, Urumqi, China (345042453@qq.com, a.murat@xjnu.edu.cn)

J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023 ISSN 1976-913X (Print)

https://doi.org/10.3745/JIPS.02.0197 ISSN 2092-805X (Electronic)

Improved Character-Based Neural Network for POS Tagging on Morphologically Rich Languages

356 | J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023

In those languages, a word often tends to encode various grammatical properties such as number, person,

case, gender, tense, aspect, etc. and can exhibit a large diversity of morphological complexity [1].

However, these complex morpho-syntactic property has generated many challenges to the basic down-

stream NLP tasks in those languages. As with many other NLP tasks, POS tagging always severely

suffers from unknown or out-of-vocabulary (OOV) word problem and possibly more than others, due to

the scarce training data with syntactic annotation. This issue often happens if a language is

morphologically so rich and derivative that has various agglutinative property and limited supervised

data [2].

Many research studies have suggested that tackling the OOV issue needs to pretrain the word-level

embedding, e.g., with word2vec [3], glove [4], and fastText [5]. This has two major advantages: (1) more

word tokens, meaning that the vocabulary is expanded by more data, thereby learning representation of

more OOV words; (2) more word token per type indicates the better modeling of semantic and syntactic

similarities between words. However, it suffers from many limitations:

 Word-level embeddings are ineffective at capturing intra-word information, as they are mainly

concerned with word forms.

 Word-level embeddings are unstable for representing the unseen or unnormalized words.

Though, the OOV problem can be resolved by expanding the vocabulary for word embeddings in many

commonly used languages, however, it does lack the ability to extract complex morphological

information from a word and cannot effectively learn the intra-grammatical structure of the words from

the morphologically rich language (MRL). To better generalize the OOV words and to improve the

limitations of word-level embeddings for POS tagging performance, we propose to apply the character-

based convolutional neural network (CNN) to POS tagging of three MRL. More specifically, our

contributions in this work are:

 In view of the Uyghur, Uzbek and Kyrgyz language characteristics, a character-based neural

network architecture (CharNN), which adopts a convolutional layer that is highly efficient in

extracting morphological features of words of any length is proposed.

 Regarding the lack of publicly available POS tagging dataset in those three languages, the custom

datasets (i.e., MultiPOS_ukg) are built and used to verify the effectiveness of our model. Moreover,

our model is experimented on the other agglutinative and non-agglutinative language datasets.

 To evaluate the robustness of our model against the OOV problem, the proposed model is

performed on the manually unnormalized development-set which is generated by altering the

characters of word in the normal development-sets. With the increasing degree of editing operation,

the performance of the CharNN degrades much slower than other model, which confirms that the

proposed model is more robust against the unnormalized case.

Further experimental results indicate that the proposed CharNN performs well on agglutinative

languages, where the OOV word cases highly exist, and it can be adopted by many low-resource NLP

systems that are in demand for tackling the OOV words. Moreover, the proposed method can become an

additional preprocessing module for obtaining morphological information.

The following section of article is arranged as follows. Section 2 gives a survey on related work.

Section 3 describes the method. Section 4 presents the experimental datasets and details the experiments.

Section 5 demonstrates the limitation and conclusion.

Samat Ali and Alim Murat

J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023 | 357

2. Related Work

Traditional POS tagging pipelines rely on numerous handcrafted features and task-wise knowledge.

For agglutinative and resource-limited languages, this type of technique is not very effective. Very

recently, deep neural networks (DNNs) have demonstrated great performance in the POS tagging task,

owing to their ability to automatically extract syntactic dependencies and semantic information for a word

sequence at a high level [6]. Numerous DNN methods of high-efficiency and high performance have

been explored for MRL POS tagging in the previous research. Here, some of the common sequential deep

learning approaches for POS tagging on MRL are addressed in this section.

Deshmukh et al. [7] have proposed a bidirectional long-short term memory (BiLSTM) model for

Marathi POS tagging. In this work, the proposed model can tackle each point from the future and past

context of sequence and improved the machine learning techniques by a large margin with an accuracy

up to 85% and 97%.

Akhil et al. [8] have proposed a deep learning approach for POS tagging for Malayalam which is Indic

language family. The used methods are long-short term memory (LSTM), gated recurrent unit (GRU),

and BiLSTM. In the experiment, the dataset was a publicly released tagged dataset for Malayalam, which

consists of 287588 words and whose tagset contains 36 tags. The results showed that, out of all

architectures, BiLSTM with 64 hidden layers reported the best score with 98.33% F1-measure.

Khan et al. [9] have demonstrated deep learning model for POS tagging task in Urdu. In the

experiments, the BJ dataset which has 5,000 sentences with 164,466 words in total was used. The result

proved that better performance for Urdu POS was obtained by employing different RNN models with

both sparse and dense features, compared to language-independent feature based conditional random

field (CRF).

Bahcevan et al. [10] have used a recurrent neural network (RNN) and LSTM model to address the POS

tagging for Turkish language. This study used the IMST Universal Dependencies TreeBank which

consists of 5,635 sentences with 48,000 words collected from daily news reports and novels. The

performance was compared to the state-of-the-art methods. The results showed that LSTM outperforms

RNN with 88.7% F1-score.

Todi et al. [11] have presented a statistical POS tagger for Kananda using different machine learning

and NN models. The architecture started with the Vanilla RNN network and then used different recurrent

architectures. To overcome the OOV words issue, this work switched word-embedding to character

embedding and learned a better representation. The results showed deep learning model outperformed

the state-of-the-art POS tagger by up to 6%.

Kumar et al. [12] have evaluated the various sequential deep learning method like RNN, GRU, LSTM,

and BiLSTM on the manually tagged tweets data for Malayalam POS tagging. The model training phase

includes both word and character level representation. It was found that GRU-based model at the word-

level produced the highest F1-score of 79.39%, and the BiLSTM performed better at character-level with

a F1-score of 82.39%.

Though DNN have successfully been used for POS tagging tasks in recent studies, but most of the

research work relatively employed the different variants of RNN-based architectures that needs high-

quality word embeddings pretrained on a large amount of corpus, and not many of them discussed the

OOV problem. Very little work has been done on Uyghur, Uzbek, and Kyrgyz POS tagging, due to the

Improved Character-Based Neural Network for POS Tagging on Morphologically Rich Languages

358 | J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023

scarcity of quality annotated data. One of such endeavor was by Maimaiti et al. [13] where they revealed

that the BiLSTM network with a CRF layer achieved accuracy of 98.41% on their dataset only for

Uyghur. Moreover, they had used more data and done complex feature engineering to learn the word

sequence.

Inspired by the state-of-the-art approach [1], the use of character-based CNN to capture the complex

features hidden in the words drew our attention. In their work, the empirical evidence was highlighted

that the CNN model shows higher flexibility than LSTM in processing sub-word information.

The CNN architectures with great discriminative ability are generally used in image processing

applications [14-16] and have achieved many remarkable performances. In the text processing, the CNN

model often utilizes several filters to capture n-grams of any lengths in a word, which can encode any

patterns from morphemes up to words in POS tagging. Therefore, this capability of CNN architecture

hints that it can work well on agglutinative languages, where the OOV words highly occurs. To this end,

we propose a character-based DNN architecture that uses character-based representation to allow more

efficient feature extraction from word of any size, hence it eases the problem of Unknow or OOV words

in the tagging.

3. Method

The proposed architecture consists of a feature representation model and a scoring model. The feature

representation model is a combination of character-level and word-level representation. The scoring

model is a network, which scores each word for its tag in a sentence and adopt the Viterbi algorithms to

predict specific tags. We explain the details of our method in the following subsections.

3.1 Feature Representation

In the proposed architecture, each word from the input sequence is represented by a combination of

two vector features to preserve both semantic and morpho-syntactic granularities of a word. The initial

layer of the network generates real-valued feature vectors by word transformation, which can encode

pivotal information like morpho-syntactic and semantic properties. We employ a fixed-length word

vocabulary �� and segment words into characters, to build a fixed-length character vocab-table ���.

Considering a sentence that is composed of N words {��,��, … ,��}, each word �� is transformed into

a vector �� = ���; ���� that includes double sub-vectors: the word-based embedding �� ∈ ℝ	�

 and the

character-based embedding ℝ�
� of ��. Word-based embeddings are used for capturing semantic and

syntactic features, while character-based embeddings are for morphological information.

3.1.1 Word-level representation

To create word embeddings, the column vectors encode word-based embeddings in an embedding

matrix �� ∈ ℝ	�×|��|. Each column ��� ∈ ℝ	�

 denotes the word-based embedding of the i-th word in

the vocab-table. Then, the matrix-vector product is used to convert word � into its word-based

embedding ��:

�� = ��
�
�
, (1)

Samat Ali and Alim Murat

J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023 | 359

where 	� is a vector of size is |��| with a value of 1 at index 	 and 0 in the remaining spot. The matrix

�� is a parameter used for learning, and the word-based embedding’s size is a hyperparameter that is

tuned in terms of specific requirements.

3.1.2 Character-level representation

In MRL, POS tagging also suffers from OOV problem, and its training data with syntactic annotation

is very scarce. Many research studies have revealed that the optimal solution to tackle this issue is to

perform word-level representation from a large set of unlabeled data, such that the syntactic and semantic

similarities of the words can be better modeled using word-level representation. It is a fact that word

embedding with more vocabulary can ameliorate the OOV problem, but it does not capture the

morpheme-based information from the character n-grams of a word which would be a useful feature to

indicate word form in POS tagging of highly inflected languages. For example, In the Uzbek POS

tagging, informative features may occur at the start (such as the prefix "na" in "natunush", which means

strangeness in English), or at the end (the suffix “chi” in “oqutquchi” means teacher in English), and

those features can lead to many OOVs and data sparsity.

Fig. 1. The proposed CharNN architecture for character-level representation.

To compensate for these issues, we propose to augment the word-based representation with character-

level features and adapt a CNN-based word embedding model to get a more precise character-level

feature for each word, as illustrated in Fig. 1. Model details are as follows:

 The first layer is an embedding layer with a size equal to vocab-size |w| and a dimension of 32 for

each character. The purpose of this layer is to encode similarities between character into a multi-

dimensional space in which two characters appearing in similar context are near each other.

0 … 0

0.2 … -5.6

-5.9 … 25.1

3.8 … 2.6

42 … 3.0

-9.1 … 5.3

-4.6 … 9.3

0.3 … 4.5

-5.8 … 6.7

62 … 2.8

5.4 … 3.7

0 … 0

padding

q

o

r

g

a

n

m

a

padding

d

a

Character Embedding
|w|×���

1.5

-0.1

…

…

…

…

…

4.3

…

…

CNN filters (4 filters with size of 2,3,4 and 5)

2×��� 3×���
5×���

1.5 75.6 8.6

Max

1.5 … 75.6 … 8.6 … … 8.6

Max Max

Character-level Representation

…

…

…

…

4.5

4×���

8.6

Max

…

…

…

5.1

…

+

Improved Character-Based Neural Network for POS Tagging on Morphologically Rich Languages

360 | J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023

 The second layer is composed of four different convolutional kernels with sizes of 2,3,4 and 5, and

each one has 25 dimensions. They overlap along the different kernels and can encode pattern of

2,3,4 and 5 consecutive character n-grams. We expect those kernels to gain morphemes of up to 5

characters.

 In the output layer, each of convolutional filters is fed through a max pooling layer (size of 4, one

for each filter), and the pooling results are concatenated to reduce the convolution results into a

single embedding vector with sizes of 100.

Given a word
 which is composed of M characters {��, ��, … , �}, first we convert every character

�� into a character embedding ���� . Like the word-based embedding, the column vectors encode

character-based embeddings in an embedding matrix ��� ∈ ℝ	��×|���|. Given a character c, then the

corresponding embedding ��� is formulated based on the matrix vector product:

��� = ���
�� , (2)

where 	� is a vector size of |���| with a value of 1 at index c and 0 in the remaining positions. Then, the

sequence of character embeddings ����� , ���� , … , ��� is an input for the convolution layer, which performs

a matrix-vector procedure on every window size ��� of character n-grams in the char sequences

����� , ���� , … , ���. The concatenation of character embedding m is defined as a vector �� ∈ ℝ	�����.

�� = ��
��(�����)/�

�	
, … , �

�
(�����)/�

�	 �, (3)

Different convolution layers perform the computation of the �-th element of the vector ��_��, which is

the character-based representation of a given word.

���_���� = ���
����

[���� + ��]�, (4)

where �� ∈ ℝ�
�×	����� denotes the weight matrix of convolutional layer. A similar matrix is exploited

to obtain the local features of each character n-grams of a word. Finally, the max-over-time pooling is

performed to attain a global-feature vector for a word. Matrices ��� and �� , and vectors �� are

parameters that our model needs to learn. The hyper-parameters are selected based on a specific task and

include the character vector size ���, the number of convolution units ���, and the window size ���.

3.2 Scoring and Tag Inference

In the scoring model, we adopt the sliding window scheme [17] to assign all tags T for each word a

score and follow the viewpoint that the tag of a word is generally determined by its surrounding words,

especially which is viable in many NLP tasks, like NER and Dependency Parsing. A sentence with N

words {��,��, … ,��}, which is already transformed into the joint embedding: word-wise and character-

wise {��,��, … ,��}. To perform the tag scores prediction for the n-th word in a phrase, a vector �� is

generated from the concatenation of embeddings �� and centered on the n-th word:

�� = ����(����)/�, … ,���(����)/��
�
. (5)

Samat Ali and Alim Murat

J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023 | 361

We employ special padding marks and tag words with indices that extend beyond the phrase boundary.

The vector �� is then passed through two layers of a neural network, which extract high level

representations and perform the tag scoring:

����� = ��ℎ����� + ���+ ��, (6)

where matrices �� ∈ ℝ�
�×��(���
�) and �� ∈ ℝ|�|×�
� , and vectors �� ∈ ℝ�
� and �� ∈ ℝ|�| are also

parameters that our model learns, and h(.) is the hyperbolic tangent as a transfer function. Additionally,

the context window size �� and the number of hidden units ℎ�� are used as hyper-parameters.

In POS tagging, there is a strong correlation between the adjacent words and their tags. Some of them

are seen in chunks (e.g., name entities with two or more-word tokens), and the parts of them are less

likely to occur behind the other tags (especially, adjectives do not follow verbs in SOV languages).

Therefore, a sentence-level tag prediction scheme that focus more on the structural information of word

sequence can perform better with tag dependencies. For a given list of words, this approach uses a

transition score ��,� when transitioning from tag � ∈T to � ∈T, and a score ��,� when starting at the t-th

tag. Given the expression [�]�
� = {��,��, … ,��}, scoring a tag path [�]�� = {��, ��, … , ��} is defined in

the following way:

��[�]�
� , [�]�� ,�� = ∑ ���	
�,�	 + �(��)�	��

��� , (7)

where �(��)�	 is the score of tag �� at word �� , and � is all the trainable parameters

��� ,��� ,��, ��,��, ��,��, ��,��. Then, we use the Viterbi algorithm and predict the final sentence tags

[�∗]�
� that can lead to the maximal score:

[�∗]�
� = ��! ���

[�]�
�∈��

��[�]�
� , [�]�� ,��. (8)

3.3 Model Training

The network is trained using the same method presented in [17], namely, minimizing the negative log

likelihood on the training dataset D. In this method, we model the sentence score as a path conditional

probability and calculate the exponentiation score, then normalize all possible paths that have high

probability. Taking the log, we can come to the following formulation in terms of conditional log-

probability:

�"! #������ , ����� ,�� = ������� , ����� ,��− �"! $∑ %������
�,����

�,��
∀����

�∈�� &. (9)

Then, the stochastic gradient descent (SGD) is used to degrade the negative log-likelihood regarding θ

in the following way:

� ↦ ∑ − �"! #����
�
�,����

�,��∈� ��'��� , ����� ,��, (10)

where ����� represents a sentence from training dataset D, and �'��� is the tag. The proposed network

architecture can be effectively computed using the backpropagation technique.

Improved Character-Based Neural Network for POS Tagging on Morphologically Rich Languages

362 | J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023

4. Experiments

In the following part, we demonstrate our experimental settings and performance results of applying

the suggested CharNN architecture to the POS tagging of morphologically rich languages such as

Uyghur, Uzbek, and Kyrgyz.

4.1 Pre-processing

There are no available normalized text corpora that those three MRL involved. Considering the quality

and scale of the corpus, the news corpora of Uyghur, Uzbek, and Kyrgyz languages provided by Leipzig

University (http://corpora.un-leipzig.de) are used, as the source of unlabeled monolingual raw text. These

raw texts are preprocessed based on the following step: (1) removing sections that are not in specific

languages; (2) extracting a stem from a raw word in the text; (3) and removing sentences including less

than two words. Intending to investigate the importance of word-stem on word-based representation, the

words are transformed into their word-stem form by removing the inflected parts, and the word-stem

version of corpus are stored for later use.

In the word embeddings of three MRL, the same parameters for those three languages are selected,

except for the minimum word frequency (MWF). As various word formation and distribution of three

languages in the corpus lead do different word capacity that can reflect the language characteristics. in

Uyghur, the frequency of occurrence of a word must be more than 10 to be contained in the vocabulary,

which produces a total of 32,642 entries. For Uzbek, MWF with 7 is selected and total 30,561 entries are

generated. For Kyrgyz, MWF of 7 is also considered, which leads to 26,548 entries in total. It is noted

that the suffixes will not be included, as the MWF is done solely on the word-stem. This is another way

of resolving the data sparsity and OOVs problem in MRL that are highly agglutinative and have scarce

annotated data. For the experiments on three MRL, the fastText 100-dimensional embedding vector is

trained for each language.

In the character embeddings, the size of the character vocabulary of three MRL is too limited in

comparison with the word vocabulary in the corpora. Hence, the training corpora for POS tagging are

large enough to effectively train character-based embeddings. It is vital that the embeddings based on

characters must strictly use raw (words with a root and suffixes) words. Hence, the network could capture

the morphological information and word form of a word.

4.2 Dataset

Since those languages lacks the publicly available annotated dataset for POS tagging, the custom

datasets (i.e., MultiPOS_ukg) for Uyghur, Uzbek, and Kyrgyz, which include 12 POS tags are created

using our tokenizer and annotated with help of language specialist. It will be released online soon. The

specifics about datasets are provided in Table 1.

To make our results more concrete and comparable to other relevant research on POS tagging, the

proposed approach is additionally tested on a publicly released Turkish dependency parsing dataset. It is

because Turkish is also highly inflected language that it is topologically very similar to those three MRL,

and they share the same grammatical structure in sentence. The additional POS tagging dataset for

Turkish is METU Turkish Treebank [18] (http://tools.nlp.itu.edu.tr/Datasets), which consists of 56k

Samat Ali and Alim Murat

J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023 | 363

word tokens, 5,600 sentences, and 13 POS tags. in Turkish POS tagging part, the same training

configuration and data partition are used, as in those three MRL.

Table 1. Datasets for Uyghur, Uzbek, and Kyrgyz POS tagging

Language Set Number of sentences
Number of tokens

(distinct stem)

Uyghur Training 20,000 28,325

Development 1,000 1,376

Test 500 712

Uzbek Training 20,000 22,159

Development 1,000 1,102

Test 500 532

Kyrgyz Training 15,000 25,942

Development 200 335

Test 500 844

4.3 Experimental Setup

4.3.1 Hyper-parameter setting

The development set is used to tune the network hyper-parameters, since various hyper-parameter

combinations can produce almost the same consequences. Learning rate (LR) is typically one of the

hyper-parameters having a substantial impact on the prediction process in SGD training. Therefore, our

focus on tuning the parameters is mostly about LR, in comparison with others. However, when using the

same number of training iterations, the results from LR values of 0.005 to 0.01 are very close.

Additionally, a learning rate setting is used to reduce LR � based on the training epoch �. So, the LR for

each epoch �� is computed in the following way:

�� =

�
.

The LR setting and its generalization are presented in [17]. Noting that the same hyper-parameters are

used for Uyghur, Uzbek, Kyrgyz and Turkish, which could indicate that our suggested approach is robust

to multiple languages which are topologically identical. The selected hyper-parameters settings are

presented in Table 2.

4.3.2 Baseline setup

Extensive experiments on two datasets, including the MultiPOS_ukg and the METU Turkish Treebank,

are conducted to validate the performance of the proposed CharNN. They include four morphologically

rich languages. In our experiments, we test the proposed CharNN against several different baselines. The

first baseline is word-based neural network (WordNN) that uses only randomly initialized word-level

representation. The second baseline is WordNN that only includes suffix embedding in which size of 2,

3, 4, and 5 suffixes are used. The third baseline is also WordNN that is fed with word-stem-level

representation instead of word. the fourth baseline is WordNN that includes two additional handcrafted

features: word-stem and suffix. In addition, to ensure a fair comparison with other related research work,

our proposed model is applied to a Turkish dataset with the same features and model hyper-parameters

for the POS tagging task.

Improved Character-Based Neural Network for POS Tagging on Morphologically Rich Languages

364 | J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023

Further investigation suggests that integrating the character-based representation with word-based

models could be as they capture orthographic, morpho-syntactic, and semantic components of word

similarity.

Table 2. Hyper-parameter settings

Component Value

�
� (Word) Dim 100

�
� Word Count. Window 5

�
�� (Char) Dim 32

�
�� Char. Count. Window [2, 3, 4, 5]

��	 Convol. Units 100

ℎ�	 Hidden Units 50

� Learning Rate 0.0075

4.4 Results and Analysis

POS tagging is a classification task where each word in a sentence will be tagged with the appropriate

syntactic category based on its usage. In this work, the tagging performance of different experimental

runs are reported using accuracy (Acc) metric.

In the first set of experiments, the proposed CharNN is evaluated alongside different baseline models

using our custom dataset MultiPOS_ukg. The performance results are presented in Table 3, where stem

denoting additional word-stem feature, suf. denoting suffix features, and OOTV indicating out-of-the-

tagged-vocabulary.

Table 3. Tagging accuracies of different NN’s in POS tagging on the Uyghur, Uzbek, and Kyrgyz dataset

(MultiPOS_ukg) (unit: %)

Method Feature
Uyghur Uzbek Kyrgyz

Acc Acc OOTV Acc Acc OOTV Acc Acc OOTV

CharNN N/A 90.47 85.48 80.16 73.74 79.32 80.68

WordNN Suf.+Stem 76.89 86.85 78.32 71.31 75.21 79.48

WordNN Stem 75.17 79.95 76.98 68.45 73.08 76.05

WordNN Suf. 73.35 80.61 75.79 63.64 71.34 76.96

WordNN N/A 73.19 72.92 75.68 62.40 70.13 71.94

As seen in Table 3, the WordNN that does not use character-level embeddings and has no additional

features consistently produces low accuracy across all languages, including OOTV tagging. This is due

to the fact that word-level embedding can only learn semantic information about a word and ignores the

word-form information, which is crucial for a word in MRL. This form of word-level representation is

ideal for languages like Chinese and English whose grammatical structures considerably diverge from

those of MRL. Therefore, simply using word-level embeddings performs poorly on MRL scenario.

Combining stemming and suffix features substantially improves the accuracy (by up to 3, 3, and 5

points in Uyghur, Uzbek, and Kyrgyz, respectively) and OOTV accuracy (by up to 14, 9, and 8 points in

Uyghur, Uzbek, and Kyrgyz, respectively), when WordNN are also utilized. It is found that additional

features significantly boost the performance of OOTV by a much larger margin than general tagging.

Samat Ali and Alim Murat

J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023 | 365

This suggests that stemming and suffix features can assist WordNN in modeling morphological

information from the word, even if they lack word embeddings.

It is worth noting that the CharNN model nearly outperforms the WordNN model on different

experiment runs. This seems to show that character-based representation learning is more effective

solution to the data sparsity problem than the WordNN. Additionally, it is confirmed that there are a few

words that are OOTV if they do not appear in the training set. The CharNN also shows its flexibility in

processing sub-word information of a word, using different kernels to capture n-grams of varying lengths.

In our setting, a kernel with a minimum length of 2 is enough for capturing small morphemes that are

possibly a prefix or suffix, whereas a kernel with a maximum length of 6 is capable of capturing typical

words. the CharNN always outperforms the word-based model due to its ability to encode patterns

ranging from morphemes up to words.

Another interesting case is found in Table 3 that there are discrepancies in performance amongst the

three languages. In Uyghur POS tagging, using the CharNN model improves the accuracy from 84.89%

to 88.47%, while the performance of OOTV did not have a significant impact. Since a Uyghur word is

highly inflectional and has considerable complex grammatical form. Instead, there are fairly less

grammatical changes in words from Uzbek and Kyrgyz so that those handcrafted features show relatively

small improvement in the POS tagging for OOTV words. Overall, it can be argued that CharNN is more

suitable for processing the morphemes in highly agglutinative languages with the help of convolutional

kernels.

4.4.1 Comparison with SOTA taggers for METU Turkish Dataset

In this experiment, the effectiveness of the proposed CharNN architecture on Turkish dataset is

investigated, and the resulting performance is compared to that of previous research works. the results

are presented in Table 4.

Table 4. Comparison with related study on the Turkish META-Sabancı Turkish Treebank dataset

Study Model Accuracy (%)

This work Char-based CNN 90.36

Esref and Can [18], 2019 CRF 89.20

Bhavan et al. [10], 2018 RNN 79.70

 LSTM 89.00

The performance show that the CharNN model outperforms the other models with a slight advantage,

where ours is 1.36% higher than the LSTM, 1.16% higher than the CRF, and 10.66% higher than the

RNN. Moreover, the CRF and LSTM are very close and boost the RNN by a large margin. CRF simply

has a much smaller context windows and requires complex feature engineering that are hard to acquire

and time-consuming, thus the slightly poor performance. The LSTM theoretically can be capable of

encoding long-distance context. However, it is constructed incrementally with repetition. This DNN

architecture would take more data to learn the same sequence than CNN, which can directly match the

pattern by employing a large kernel despite the lack of annotated POS data. It is conjectured that the

CharNN’s superior performance is due to the fact that it can more readily capture morpho-syntactic

information of a word that competing model. In our setting, the CharNN uses four different kernels with

Improved Character-Based Neural Network for POS Tagging on Morphologically Rich Languages

366 | J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023

sizes of 2, 3, 4, and 5 which can capture morphemes with different lengths or even a normal word, without

depending on any extra handcrafted features.

4.4.2 Performance comparison on non-agglutinative language dataset

Extensive experimental findings indicates that the proposed CharNN method appears to significantly

enhance the performance of POS tagging for MRL. Considering the performance of the CharNN in non-

agglutinative languages, the effectiveness of different representation methods which include word-level,

character-level, and joint representation are experimented on the Chinese and English datasets, as a

further investigation. Our purpose is to investigate CharNN’s generalizability and to evaluate how much

it relies on training languages. The selected languages are Uyghur, Uzbek, and Kyrgyz as MRL, and the

counterexample languages like Chinese and English. The MRL practically has large numbers of

grammatical cases which result from different suffixes of varying lengths. In Fig. 2, join denotes the joint

model, char denotes a model trained only with CharNN, and word is a model trained only with WordNN.

In Fig. 2, it is demonstrated that the char model is superior to the word model in complex morphological

scenarios. Uyghur shows significantly better improvements than Uzbek and Kyrgyz in both the character-

based and word-based models in MRL. Since, a Uyghur word consists of a complex variation of vowels,

consonants, and grammatical features in comparison with Uzbek and Kyrgyz that have relatively weaker

inflection. On the English and Chinese dataset, however, the word-based and join models provide a

slightly better outcomes than the character-based model. According to these empirical findings,

character-level representations are more significant for complex morphological languages due to their

capability to encode the morphological information more effectively.

Fig. 2. Evaluation results on non-agglutinative language datasets. Uyghur, Uzbek, and Kyrgyz use our

custom dataset MultiPOS_ukg and zh_GSD (https://github.com/UniversalDependencies/UD_Chinese)

for Chinese, En_EWT (https://github.com/UniversalDependencies/UD_English) for English.

4.4.3 Analysis on the OOV

In this work, the reason for utilizing a character-based representation model is based on the idea that it

can tackle the OOV issues. In order to prove the hypothesis, an ablation experiment is conducted on the

unnormalized text, which may include intentional or accidental misspelled words, namely, OOVs. While

there is no social media data that exists many misspelled words for those three languages. However, an

experiment is designed to imitate the randomly edited text by manually changing the word in the

development set using insertion, deletion, substation, and swap. For instance, in a word "gulum" if the

position 2 (0-based) is modified, the resulting words are “guxlum,” “guum,” “guxum,” and “guulm,”

where x is a random character from the language’s alphabet.

Samat Ali and Alim Murat

J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023 | 367

For each operation, a group of changed development sets are constructed, and the words that are of

minimal length 2 are edited with a probability of 0.25, 0.5, 0.75, or 1 depending on the operation. In the

experiment, the normal training sets are used for training while the modified development-sets are used

to predict POS tag. The average accuracies are illustrated in Fig. 3.

As seen in the Fig. 3, all models suffer from a growing percentage of artificially made OOV words,

but CharNN always degrades the least and steady. This suggested that CharNN is more robust to

misspelled words. When reviewing the individual examples of misspelling, CharNN is less sensitive to

replacement, while insertion and deletion yields strong impact and swap has the most negative impacts

on its performance. In the substitution, the distortion to the character n-grams is smaller based on different

lengths and this leads to smaller negative impact on insertion and deletion. However, in the case of swap,

it is shown the same effect which is more like substituting two chars instead of one, thus larger

degradation.

Fig. 3. Average POS tagging accuracies on the unnormalized development sets with the four adjustments.

5. Conclusion

In this study, a Character-based Neural Network Architecture (CharNN) for POS tagging task in three

MRL is proposed. The proposed architecture uses the character-based representation to allow effective

feature extraction from word of any size and combines it with word-level representation. Moreover,

Regarding the lack of publicly available POS tagging dataset in those three languages, the custom datasets

(i.e., MultiPOS_ukg) are constructed. The CharNN is experimented on the MuliPOS_ukg set and non-

agglutinative language datasets. The experimental performances on the MultiPOS_ukg set show that the

proposed CharNN can improve POS tagging accuracy by large margin than the word-based model in

each language, with an improvement of 14, 2, and 4 points for Uyghur, Uzbek, and Kyrgyz respectively.

Further, to assess the robustness of our model against the OOV problem in POS tagging, the proposed

model is performed on the manually unnormalized development-set which is generated by editing the

words in the normal development-sets. The performance of the CharNN degrades much slower than other

model and it can be verified that the proposed model is more robust against the unnormalized case.

In this work, the more focus is on the character representation, which mainly aims at exploring the

efficacy of CharNN in dealing with the OOV words in POS tagging. However, the tag scoring and

inference is our limitation, and it could potentially further improve the POS tagging performance. This

part is left for the future work.

Improved Character-Based Neural Network for POS Tagging on Morphologically Rich Languages

368 | J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023

In addition, we intend to examine the extent to which Neural Machine Translation (NMT) system for

Chinese and minority languages can benefit from this proposed architecture.

Acknowledgement

This work is supported by the Doctoral Fund of Xinjiang Normal University (No. XJNUBS2007).

References

[1] X. Yu and N. T. Vu, “Character composition model with convolutional neural networks for dependency

parsing on morphologically rich languages,” in Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (ACL), Vancouver, Canada, 2017, pp. 672-678.

[2] T. V. Ngo, T. L. Ha, P. T. Nguyen, and L. M. Nguyen, “Overcoming the rare word problem for low-resource

language pairs in neural machine translation,” 2019 [Online]. Available: https://arxiv.org/abs/1910.03467.

[3] M. Grohe, “word2vec, node2vec, graph2vec, x2vec: towards a theory of vector embeddings of structured

data,” in Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems, Portland, OR, 2020, pp. 1-16.

[4] C. I. Eke, A. Norman, L. Shuib, F. B. Fatokun, and I. Omame, “The significance of global vectors

representation in sarcasm analysis,” in Proceedings of 2020 International Conference in Mathematics,

Computer Engineering and Computer Science (ICMCECS), Ayobo, Nigeria, 2020, pp. 1-7.

[5] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword information,”

Transactions of the Association for Computational Linguistics, vol. 5, pp. 135-146, 2017.

[6] A. Chiche and B. Yitagesu, “Part of speech tagging: a systematic review of deep learning and machine

learning approaches,” Journal of Big Data, vol. 9, article no. 10, 2022. https://doi.org/10.1186/s40537-022-

00561-y

[7] R. D. Deshmukh and A. Kiwelekar, “Deep learning techniques for part of speech tagging by natural language

processing,” in Proceedings of 2020 2nd International Conference on Innovative Mechanisms for Industry

Applications (ICIMIA), Bangalore, India, 2020, pp. 76-81.

[8] K. K. Akhil, R. Rajimol, and V. S. Anoop, “Parts-of-Speech tagging for Malayalam using deep learning

techniques,” International Journal of Information Technology, vol. 12, pp. 741-748, 2020.

[9] W. Khan, A. Daud, K. Khan, J. A. Nasir, M. Basheri, N. Aljohani, and F. S. Alotaibi, “Part of speech tagging

in Urdu: comparison of machine and deep learning approaches,” IEEE Access, vol. 7, pp. 38918-38936, 2019.

[10] C. A. Bahcevan, E. Kutlu, and T. Yildiz, “Deep neural network architecture for part-of-speech tagging for

Turkish language,” in Proceedings of 2018 3rd International Conference on Computer Science and

Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 2018, pp. 235-238.

[11] K. K. Todi, P. Mishra, and D. M. Sharma, “Building a Kannada POS tagger using machine learning and neural

network models,” 2018 [Online]. Available: https://arxiv.org/abs/1808.03175.

[12] S. Kumar, M. A. Kumar, and K. P. Soman, “Deep learning based part-of-speech tagging for Malayalam

Twitter data (Special issue: deep learning techniques for natural language processing),” Journal of Intelligent

Systems, vol. 28, no. 3, pp. 423-435, 2019.

[13] M. Maimaiti, A. Wumaier, K. Abiderexiti, and T. Yibulayin, “Bidirectional long short-term memory network

with a conditional random field layer for Uyghur part-of-speech tagging,” Information, vol. 8, no. 4, article

no. 157, 2017. https://doi.org/10.3390/info8040157

Samat Ali and Alim Murat

J Inf Process Syst, Vol.19, No.3, pp.355~369, June 2023 | 369

[14] S. Fouladi, M. J. Ebadi, A. A. Safaei, M. Y. Bajuri, and A. Ahmadian, “Efficient deep neural networks for

classification of COVID-19 based on CT images: virtualization via software defined radio,” Computer

Communications, vol. 176, pp. 234-248, 2021.

[15] A. Javaheri, N. Moghadamnejad, H. Keshavarz, E. Javaheri, C. Dobbins, E. Momeni-Ortner, and R.

Rawassizadeh, “Public vs media opinion on robots and their evolution over recent years,” CCF Transactions

on Pervasive Computing and Interaction, 2, 189-205, 2020.

[16] S. Fouladi, A. A. Safaei, N. Mammone, F. Ghaderi, and M. J. Ebadi, “Efficient deep neural networks for

classification of Alzheimer’s disease and mild cognitive impairment from scalp EEG recordings,” Cognitive

Computation, vol. 14, pp. 1247-1268, 2022.

[17] R. Collobert, “Deep learning for efficient discriminative parsing,” in Proceedings of the 14th International

Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, 2011, pp. 224-232.

[18] Y. Esref and B. Can, “Using morpheme-level attention mechanism for Turkish sequence labelling,” in

Proceedings of 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas,

Turkey, 2019, pp. 1-4.

Samat Ali https://orcid.org/0000-0002-9425-1980
He received B.S. and M.S. degrees in School of Computer Science and Engineering

from Xinjiang University in 2006 and 2010, respectively. Since September 2012, he is

with the School of Computer Science and Engineering from Xinjiang Normal

University as a Teaching Assistant. His current research interests include Natural

Language Processing and Machine Translation.

Alim Murat https://orcid.org/0000-0001-8510-7808
He received B.E. and M.S. degrees in School of Computer Science and Technology

from Xinjiang Normal University in 2011 and 2014, respectively. He finished his

Ph.D. degree in Computer Science from Xinjiang Technical Institute of Physics &

Chemistry, Chinese Academy of Science in June 2017. Since July 2017, he has been

working in the Xinjiang Normal University as a lecture. His current research focus

includes natural language processing and Machine Translation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

