• Title/Summary/Keyword: replacement materials

Search Result 839, Processing Time 0.025 seconds

Optimal Replacement Scheduling of Water Pipelines

  • Ghobadi, Fatemeh;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.145-145
    • /
    • 2021
  • Water distribution networks (WDNs) are designed to satisfy water requirement of an urban community. One of the central issues in human history is providing sufficient quality and quantity of water through WDNs. A WDN consists of a great number of pipelines with different ages, lengths, materials, and sizes in varying degrees of deterioration. The available annual budget for rehabilitation of these infrastructures only covers part of the network; thus it is important to manage the limited budget in the most cost-effective manner. In this study, a novel pipe replacement scheduling approach is proposed in order to smooth the annual investment time series based on a life cycle cost assessment. The proposed approach is applied to a real WDN currently operating in South Korea. The proposed scheduling plan considers both the annual budget limitation and the optimum investment on pipes' useful life. A non-dominated sorting genetic algorithm is used to solve a multi-objective optimization problem. Three decision-making objectives, including the minimum imposed LCC of the network, the minimum standard deviation of annual cost, and the minimum average age of the network, are considered to find optimal pipe replacement planning over long-term time period. The results indicate that the proposed scheduling structure provides efficient and cost-effective rehabilitation management of water network with consistent annual budget.

  • PDF

A CLINICAL STUDY OF DENTAL AMALGAM RESTORATION -Reasons for replacement and duration of primary restoration- (치과용 아말감 충전의 임상적 고찰 -재충천의 이유 및 기간에 대한 조사보고-)

  • Lee, Chung-Suck;Kim, Kwang-Ju
    • Restorative Dentistry and Endodontics
    • /
    • v.6 no.1
    • /
    • pp.109-114
    • /
    • 1980
  • Ease of manipulation, adequate mechanical properties, long years of experience and economical cost are the factors which have established amalgam as the most widely used material for dental restorations. But amalgam restoration may require replacement because of secondary caries, fracture, "fall-out", dimensional change, tarnish or corrosion etc.. These failures of amalgam restorations seem to arise from failures during operations rather than from the inherent shortcomings of the material itself or of the patient's mismanagement. It is anticipated that notonly number of analgam restoration, but failures will be increase after more extensive utilization of the medical insurance which began in 1977. Then authors think that it would be helpful for the development of better treatment in daily dental practice, to know the duration of amalgam restorations and the reasons for their replacement. The data for this survey was compiled from 2, 856 out-patients of the Department of Dentistry, Ewha Woman's University Hospital from January 1975 to December 1977. 260 cases among 1,718 fillings were studied, of which 205 cases both had a single reason for replacement and recognized the date of the previous filling. The results obtained were as follows; 1. Amalgam fillings were 58. 5 percent of all dental restorative materials. Of these, 15. 13 percent of the amalgam restorations had to be replaced. 2. The first reason for replacement of amalgam restorations was secondary caries (56.10%), the second was fracture (23.80%) and the third was "fall-out" (8.78%). 3. Among those amalgms requiring replacement, 52.2 percent had been in place less than 3 years, 70.7 percent within 5 years and 89.8 percent had been in place less than 10 years. Only 10.2 percent had been in place more than 10 years.

  • PDF

Use of Sewage Sludge Ash for Construction Material (건설재로서 하수슬러지 소각재의 활용)

  • Lee, Cheo-Keun;Ahn, Kwang-Kuk;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.25-34
    • /
    • 2003
  • This paper is focused on an experimental study in order to investigate the utilization of sewage sludge ash as the cover and liner materials for the waste disposal landfill or as construction materials. A series of tests were performed to evaluate the basic properties, compaction, compressive strength, consolidation, permeability, and CBR of sewage ash. Specially, clay bricks were made as increasing replacement ratio of sewage ash (such as 5, 10, 15, 20, 25, 30%). And tests were fulfilled for its quality. Bentonite and lime were used as the additives to improve permeability properties of sewage sludge ash. As a result of tests, it was shown that the permeability coefficient decreases as increasing bentonite content and the percentage of bentonite was roughly needed 20% to keep the permeability coefficient below $1{\times}10^{-7}cm/sec$. The results of unconfined compression tests show that sewage ash meets the criteria of the unconfined compression strength for cover material. It was shown that the compressive strength decreases as increasing the replacement ratio of sewage sludge ash and the maximum replacement ratio of sewage sludge ash to satisfy the quality standards of the third degree bricks was about 15%.

  • PDF

An Experimental Study on Bottom Ash for Utilization of Subbase Materials (저회의 성토재료 활용성에 대한 실험적 연구)

  • Jung, Sang-Hwa;Choe, Myong-Jin;Lee, Bong-Chun;Choi, Young-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.89-98
    • /
    • 2010
  • Recently, many researches on bottom ash which is produced in the burning process of power plant are actively performed for its utilization for soil-subbase materials. In this paper, bottom ashes from 5 different power plants are prepared and several tests including compaction, CBR, and tri-axial compression are carried out for mixed bottom ash and weathered soil considering 3 replacement ratio of 30%, 50%, and 70%. Through the tests, CBR result over 20 are evaluated without plastic property, which shows availability of subbase material. With higher increase in replacement ratio of bottom ash, CBR of mixed soil increases due to the higher mechanical performance of bottom ash. However, replacement effects of bottom ash on friction angle and cohesion are evaluated to be little since bottom ash plays a little role in rearrangement of mixed soil. Bottom ash with a good mechanical property is evaluated to have reasonable bearing capacity which shows a good property for subbase materials.

  • PDF

Design of Supplementary Cementitious Materials and Unit Content of Binder for Reducing CO2 Emission of Concrete (콘크리트 CO2 저감을 고려한 혼화재 및 단위 결합재 양의 설계)

  • Yang, Keun-Hyeok;Moon, Jae-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.597-604
    • /
    • 2012
  • The present study assessed the $CO_2$ emissions of concrete according to the type and replacement ratio of supplementary cementitious materials (SCM) and concrete compressive strength using a comprehensive database including 2464 cement concrete specimens and 776 cement concrete mixes with different SCMs. The system studied in $CO_2$ assessment of concrete based on Korean lifecycle inventory was from cradle to pre-construction, which includes consistent materials, transportation and production phases. As the performance efficiency indicators, binder and $CO_2$ intensities were analyzed, and simple equations to evaluate the amount of $CO_2$ emission of concrete were then formulated as a function of concrete compressive strength and the replacement ratio of each SCM. Hence, the proposed equations are expected to be practical and useful as a guideline to determine the type and replacement ratio of SCM and unit content of binder in concrete mix design that can satisfy the target compressive strength and $CO_2$ reduction percentage relative to cement concrete.

A Study on The Corrosion Resistance of Concrete Containing Copper Slag (동제련 슬래그 혼입 콘크리트의 부식 저항성에 관한 연구)

  • Lee, Dong-Un;Jung, Yoo-Jin;Kim, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.189-196
    • /
    • 2007
  • The purpose of this study was to analyze steel corrosion resistance of concrete containing copper slag. The specimens were made with normal portland cement and pozzolan materials with various replacement ratio and with W/B ratio ranging from 35% to 55%. Compressive strength, coefficient of chloride diffusion, corrosion area ratio and weight reduction ratio were determinated for the test. The results show that the concrete with pozzolan materials is superior resistant to chloride ions compared to the concrete without pozzolan materials. It was observed that blast furnace slag replacement ratio of 20% gives the best results with respect to chloride ion penetration and corrosion tests and observed that copper slag replacement ratio of 10% gives the seperior resistance compared to normal concrete.

Sliding Wear Behavior of UHMWPE against Novel Low Temperature Degradation-Free Zirconia/Alumina Composite

  • Lee, K.Y.;Lee, M.H.;Lee, Y.H.;Seo, W.S.;Kim, D.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.365-366
    • /
    • 2002
  • The sliding wear behavior of ultra high molecular weight polyethylene (UHMWPE) was examined on a novel low temperature degradation-free zirconia/alumina composite material and conventional alumina and zirconia ceramics used for femoral head in total hip joint replacement. The wear of UHMWPE pins against these ceramic disks was evaluated by performing linear reciprocal sliding and repeat pass rotational sliding tests for one million cycles in bovine serum. The weight loss of polyethylene against the novel low temperature degradation-free zirconia/alumina composite disks was much less than those against conventional ceramics for all tests. The mean weight loss of the polyethylene pins was more io the linear reciprocal sliding test than in the repeal pass rotational sliding lest for all kinds of disk materials. Neither the coherent transfer film nor the surface damage was observed on the surface of the novel zirconia/alumina composite disks during the test. The observed r,'stilts indicated that the wear of the polyethylene was closely related to contacting materials and kinematic motions. In conclusion, the novel zirconia/alumina composite leads the least wear of polyethylene among the tested ceramics and demonstrates the potential as lhe alternative materials for femoral head in total hip joint replacement.

  • PDF

REHABILITATION OF MISSING ANTERIOR TOOTH USING FIBER-REINFORCED COMPOSITE RESIN (Fiber-reinforced composite resin을 이용한 전치부 결손 수복)

  • Park, Heon-Jeong;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • One of the many dilemmas that the clinical restorative dentist must face is treating young adolescent patient who prematurely loses his permanent teeth. Temporary prosthetic replacement can be achieved with removable denture, orthodontic band-wire fixed denture, adhesion bridge, composite resin splint with reinforcing material until the patients go through growth and development. But, all of these have limitations. Advances in restorative materials and reinforcement materials have made possible new techniques which are as much esthetic, conservative and more economic and stronger than adhesion brides. Two cases are being presented where gas-plasma treated, woven polyethylene fabric to reinforce composite resin was used to fabricate a temporary prosthetic restoration to replace a missing maxillary central incisor. This relatively noninvasive and basically reversible procedure allows the patient to decide the final restoration as he or she goes thorough maturation of the hard and soft tissues.

  • PDF

Promoted Bone Regeneration by Nanoparticle-Type Sustained Release System of BMP-2 in Hydrogel

  • Chung, Yong-Il;Lee, Seung-Young;Tae, Gi-Yoong;Ahn, Kang-Min;Jeon, Seung-Ho;Lee, Jong-Ho
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.264-264
    • /
    • 2006
  • The nanoparticle-hydrogel complex as a new bone defect replacement matrix, which is composed of the nanoparticles for the sustained release of BMP and the hydrogel for filling the bone defect site and playing a role as a matrix where new bone can grow, is presented. In vivo evaluation of bone formation was characterized by soft X-ray, MT staining, and calcium assay, based on the rat calvarial critical size defect model. The effective bone regeneration was achieved by the BMP-2 loaded nanoparticles in fibrin gel, compare to bare fibrin gel, the nanoparticle-fibrin gel complex without BMP-2, or the BMP-2 in fibrin gel, in terms of the new bone area and the gray level in X-ray, the bone marrow are, and the calcium content in the initial defect site. These findings suggest that the BMP-2 loaded nanoparticle-fibrin gel complex can a promising candidate for a new bone defect replacement matrix.

  • PDF

Study of thin film transition liquid crystal display (TFT-LCD) optical waste glass applied in early-high-strength controlled low strength materials

  • Wang, Her-Yung;Chen, Jyun-Sheng
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • The present study verifies compressive strength, ultrasonic pulse velocity, electrical resistance,permeable ratio, and shrinkage from waste glass controlled low strength materials (WGCLSM) and early-high-strength WGCSLM specimens, by replacing the sand with waste glass percentages of 0%, 10%,20%, and 30%. This study reveals that increasing amounts of waste LCD glass incorporated into concrete increases WGCLSM fluidity and reduces the setting time, resulting in good working properties. By increasing the glass to sand replacement ratio, the compressive strength decreases to achieve low-strength effects. Furthermore, the electrical resistance also rises as a result of increasing the glass to sand replacement ratio. Early-high-strength WGCSLM aged 28 days has twice the electrical resistance compared to general WGCSLM. Early-high-strength WGCSLM aged 7 days has a higher ultrasonic pulse velocity similar to WGCSLM aged 28 days. The variation of length with age of different compositions is all within the tolerance range of 0.025%. This study demonstrates that the proper composition ratio of waste LCD glass to sand in early-high-strength WGCSLM can be determined by using different amounts of glass-sand. A mechanism for LCD optical waste glass usage can be established to achieve industrial waste minimization, resource recycling, and economic security.