• Title/Summary/Keyword: repetitive learning

Search Result 179, Processing Time 0.025 seconds

Model Analysis of AI-Based Water Pipeline Improved Decision (AI기반 상수도시설 개량 의사결정 모델 분석)

  • Kim, Gi-Tae;Min, Byung-Won;Oh, Yong-Sun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.11-16
    • /
    • 2022
  • As an interest in the development of artificial intelligence(AI) technology in the water supply sector increases, we have developed an AI algorithm that can predict improvement decision-making ratings through repetitive learning using the data of pipe condition evaluation results, and present the most reliable prediction model through a verification process. We have developed the algorithm that can predict pipe ratings by pre-processing 12 indirect evaluation items based on the 2020 Han River Basin's basic plan and applying the AI algorithm to update weighting factors through backpropagation. This method ensured that the concordance rate between the direct evaluation result value and the calculated result value through repetitive learning and verification was more than 90%. As a result of the algorithm accuracy verification process, it was confirmed that all water pipe type data were evenly distributed, and the more learning data, the higher prediction accuracy. If data from all across the country is collected, the reliability of the prediction technique for pipe ratings using AI algorithm will be improved, and therefore, it is expected that the AI algorithm will play a role in supporting decision-making in the objective evaluation of the condition of aging pipes.

Stabilization Position Control of a Ball-Beam System Using Neural Networks Controller (신경회로망 제어기을 이용한 볼-빔 시스템의 안정화 위치제어)

  • 탁한호;추연규
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.3
    • /
    • pp.35-44
    • /
    • 1999
  • This research aims to seek active control of ball-beam position stability by resorting to neural networks whose layers are given bias weights. The controller consists of an LQR (linear quadratic regulator) controller and a neural networks controller in parallel. The latter is used to improve the responses of the established LQR control system, especially when controlling the system with nonlinear factors or modelling errors. For the learning of this control system, the feedback-error learning algorithm is utilized here. While the neural networks controller learns repetitive trajectories on line, feedback errors are back-propagated through neural networks. Convergence is made when the neural networks controller reversely learns and controls the plant. The goals of teaming are to expand the working range of the adaptive control system and to bridge errors owing to nonlinearity by adjusting parameters against the external disturbances and change of the nonlinear plant. The motion equation of the ball-beam system is derived from Newton's law. As the system is strongly nonlinear, lots of researchers have depended on classical systems to control it. Its applications of position control are seen in planes, ships, automobiles and so on. However, the research based on artificial control is quite recent. The current paper compares and analyzes simulation results by way of the LQR controller and the neural network controller in order to prove the efficiency of the neural networks control algorithm against any nonlinear system.

  • PDF

Game Agent Learning with Genetic Programming in Pursuit-Evasion Problem (유전 프로그래밍을 이용한 추격-회피 문제에서의 게임 에이전트 학습)

  • Kwon, O-Kyang;Park, Jong-Koo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.253-258
    • /
    • 2008
  • Recently, game players want new game requiring more various tactics and strategies in the complex environment beyond simple and repetitive play. Various artificial intelligence techniques have been suggested to make the game characters learn within this environment, and the recent researches include the neural network and the genetic algorithm. The Genetic programming(GP) has been used in this study for learning strategy of the agent in the pursuit-evasion problem which is used widely in the game theories. The suggested GP algorithm is faster than the existing algorithm such as neural network, it can be understood instinctively, and it has high adaptability since the evolving chromosomes can be transformed to the reasoning rules.

Manifestation examples of group creativity in mathematical modeling (수학적 모델링에서 집단창의성 발현사례)

  • Jung, Hye Yun;Lee, Kyeong Hwa
    • The Mathematical Education
    • /
    • v.57 no.4
    • /
    • pp.371-391
    • /
    • 2018
  • The purpose of this study is to analyze manifestation examples and effects of group creativity in mathematical modeling and to discuss teaching and learning methods for group creativity. The following two points were examined from the theoretical background. First, we examined the possibility of group activity in mathematical modeling. Second, we examined the meaning and characteristics of group creativity. Six students in the second grade of high school participated in this study in two groups of three each. Mathematical modeling task was "What are your own strategies to prevent or cope with blackouts?". Unit of analysis was the observed types of interaction at each stage of mathematical modeling. Especially, it was confirmed that group creativity can be developed through repetitive occurrences of mutually complementary, conflict-based, metacognitive interactions. The conclusion is as follows. First, examples of mutually complementary interaction, conflict-based interaction, and metacognitive interaction were observed in the real-world inquiry and the factor-finding stage, the simplification stage, and the mathematical model derivation stage, respectively. And the positive effect of group creativity on mathematical modeling were confirmed. Second, example of non interaction was observed, and it was confirmed that there were limitations on students' interaction object and interaction participation, and teacher's failure on appropriate intervention. Third, as teaching learning methods for group creativity, we proposed students' role play and teachers' questioning in the direction of promoting interaction.

Prediction of aerodynamics using VGG16 and U-Net (VGG16 과 U-Net 구조를 이용한 공력특성 예측)

  • Bo Ra, Kim;Seung Hun, Lee;Seung Hyun, Jang;Gwang Il, Hwang;Min, Yoon
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.109-116
    • /
    • 2022
  • The optimized design of airfoils is essential to increase the performance and efficiency of wind turbines. The aerodynamic characteristics of airfoils near the stall show large deviation from experiments and numerical simulations. Hence, it is needed to perform repetitive analysis of various shapes near the stall. To overcome this, the artificial intelligence is used and combined with numerical simulations. In this study, three types of airfoils are chosen, which are S809, S822 and SD7062 used in wind turbines. A convolutional neural network model is proposed in the combination of VGG16 and U-Net. Learning data are constructed by extracting pressure fields and aerodynamic characteristics through numerical analysis of 2D shape. Based on these data, the pressure field and lift coefficient of untrained airfoils are predicted. As a result, even in untrained airfoils, the pressure field is accurately predicted with an error of within 0.04%.

Fault diagnosis of linear transfer robot using XAI

  • Taekyung Kim;Arum Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.121-138
    • /
    • 2024
  • Artificial intelligence is crucial to manufacturing productivity. Understanding the difficulties in producing disruptions, especially in linear feed robot systems, is essential for efficient operations. These mechanical tools, essential for linear movements within systems, are prone to damage and degradation, especially in the LM guide, due to repetitive motions. We examine how explainable artificial intelligence (XAI) may diagnose wafer linear robot linear rail clearance and ball screw clearance anomalies. XAI helps diagnose problems and explain anomalies, enriching management and operational strategies. By interpreting the reasons for anomaly detection through visualizations such as Class Activation Maps (CAMs) using technologies like Grad-CAM, FG-CAM, and FFT-CAM, and comparing 1D-CNN with 2D-CNN, we illustrates the potential of XAI in enhancing diagnostic accuracy. The use of datasets from accelerometer and torque sensors in our experiments validates the high accuracy of the proposed method in binary and ternary classifications. This study exemplifies how XAI can elucidate deep learning models trained on industrial signals, offering a practical approach to understanding and applying AI in maintaining the integrity of critical components such as LM guides in linear feed robots.

Utilizing Deep Learning for Early Diagnosis of Autism: Detecting Self-Stimulatory Behavior

  • Seongwoo Park;Sukbeom Chang;JooHee Oh
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.148-158
    • /
    • 2024
  • We investigate Autism Spectrum Disorder (ASD), which is typified by deficits in social interaction, repetitive behaviors, limited vocabulary, and cognitive delays. Traditional diagnostic methodologies, reliant on expert evaluations, frequently result in deferred detection and intervention, particularly in South Korea, where there is a dearth of qualified professionals and limited public awareness. In this study, we employ advanced deep learning algorithms to enhance early ASD screening through automated video analysis. Utilizing architectures such as Convolutional Long Short-Term Memory (ConvLSTM), Long-term Recurrent Convolutional Network (LRCN), and Convolutional Neural Networks with Gated Recurrent Units (CNN+GRU), we analyze video data from platforms like YouTube and TikTok to identify stereotypic behaviors (arm flapping, head banging, spinning). Our results indicate that the LRCN model exhibited superior performance with 79.61% accuracy on the augmented platform video dataset and 79.37% on the original SSBD dataset. The ConvLSTM and CNN+GRU models also achieved higher accuracy than the original SSBD dataset. Through this research, we underscore AI's potential in early ASD detection by automating the identification of stereotypic behaviors, thereby enabling timely intervention. We also emphasize the significance of utilizing expanded datasets from social media platform videos in augmenting model accuracy and robustness, thus paving the way for more accessible diagnostic methods.

Design of Robot Arm for Service Using Deep Learning and Sensors (딥러닝과 센서를 이용한 서비스용 로봇 팔의 설계)

  • Pak, Myeong Suk;Kim, Kyu Tae;Koo, Mo Se;Ko, Young Jun;Kim, Sang Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.221-228
    • /
    • 2022
  • With the application of artificial intelligence technology, robots can provide efficient services in real life. Unlike industrial manipulators that do simple repetitive work, this study presented design methods of 6 degree of freedom robot arm and intelligent object search and movement methods for use alone or in collaboration with no place restrictions in the service robot field and verified performance. Using a depth camera and deep learning in the ROS environment of the embedded board included in the robot arm, the robot arm detects objects and moves to the object area through inverse kinematics analysis. In addition, when contacting an object, it was possible to accurately hold and move the object through the analysis of the force sensor value. To verify the performance of the manufactured robot arm, experiments were conducted on accurate positioning of objects through deep learning and image processing, motor control, and object separation, and finally robot arm was tested to separate various cups commonly used in cafes to check whether they actually operate.

Monitoring System for Optimized Power Management with Indoor Sensor (실내 전력관리 시스템을 위한 환경데이터 인터페이스 설계)

  • Kim, Do-Hyeun;Lee, Kyu-Tae
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.127-133
    • /
    • 2020
  • As the usages of artificial intelligence is increased, the demand to algorithms for small portable devices increases. Also as the embedded system becomes high-performance, it is possible to implement algorithms for high-speed computation and machine learning as well as operating systems. As the machine learning algorithms process repetitive calculations, it depend on the cloud environment by network connection. For an stand alone system, low power consumption and fast execution by optimized algorithm are required. In this study, for the purpose of smart control, an energy measurement sensor is connected to an embedded system, and a real-time monitoring system is implemented to store measurement information as a database. Continuously measured and stored data is applied to a learning algorithm, which can be utilized for optimal power control, and a system interfacing various sensors required for energy measurement was constructed.

A Study on the Failure Diagnosis of Transfer Robot for Semiconductor Automation Based on Machine Learning Algorithm (머신러닝 알고리즘 기반 반도체 자동화를 위한 이송로봇 고장진단에 대한 연구)

  • Kim, Mi Jin;Ko, Kwang In;Ku, Kyo Mun;Shim, Jae Hong;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • In manufacturing and semiconductor industries, transfer robots increase productivity through accurate and continuous work. Due to the nature of the semiconductor process, there are environments where humans cannot intervene to maintain internal temperature and humidity in a clean room. So, transport robots take responsibility over humans. In such an environment where the manpower of the process is cutting down, the lack of maintenance and management technology of the machine may adversely affect the production, and that's why it is necessary to develop a technology for the machine failure diagnosis system. Therefore, this paper tries to identify various causes of failure of transport robots that are widely used in semiconductor automation, and the Prognostics and Health Management (PHM) method is considered for determining and predicting the process of failures. The robot mainly fails in the driving unit due to long-term repetitive motion, and the core components of the driving unit are motors and gear reducer. A simulation drive unit was manufactured and tested around this component and then applied to 6-axis vertical multi-joint robots used in actual industrial sites. Vibration data was collected for each cause of failure of the robot, and then the collected data was processed through signal processing and frequency analysis. The processed data can determine the fault of the robot by utilizing machine learning algorithms such as SVM (Support Vector Machine) and KNN (K-Nearest Neighbor). As a result, the PHM environment was built based on machine learning algorithms using SVM and KNN, confirming that failure prediction was partially possible.