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Abstract 

 We investigate Autism Spectrum Disorder (ASD), which is typified by deficits in social interaction, repetitive 

behaviors, limited vocabulary, and cognitive delays. Traditional diagnostic methodologies, reliant on expert 

evaluations, frequently result in deferred detection and intervention, particularly in South Korea, where there is 

a dearth of qualified professionals and limited public awareness. In this study, we employ advanced deep learning 

algorithms to enhance early ASD screening through automated video analysis. Utilizing architectures such as 

Convolutional Long Short-Term Memory (ConvLSTM), Long-term Recurrent Convolutional Network (LRCN), 

and Convolutional Neural Networks with Gated Recurrent Units (CNN+GRU), we analyze video data from 

platforms like YouTube and TikTok to identify stereotypic behaviors (arm flapping, head banging, spinning). Our 

results indicate that the LRCN model exhibited superior performance with 79.61% accuracy on the augmented 

platform video dataset and 79.37% on the original SSBD dataset. The ConvLSTM and CNN+GRU models also 

achieved higher accuracy than the original SSBD dataset. Through this research, we underscore AI's potential 

in early ASD detection by automating the identification of stereotypic behaviors, thereby enabling timely 

intervention. We also emphasize the significance of utilizing expanded datasets from social media platform videos 

in augmenting model accuracy and robustness, thus paving the way for more accessible diagnostic methods. 
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1. INTRODUCTION  

Autism Spectrum Disorder (ASD) is characterized as a neurodevelopmental disorder encompassing a 

complex array of symptoms, including deficits in social interaction, repetitive and stereotyped behaviors, 

limited vocabulary, and cognitive developmental delays [1, 2]. Despite extensive research, the genetic etiology 

of ASD remains inconclusive [1, 3]. Diagnosis is typically conducted by specialists utilizing criteria from the 

Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), or the International 

Classification of Diseases, Eleventh Revision (ICD-11) [4]. In South Korea, various diagnostic tools are 

employed, including the Autism Diagnostic Interview-Revised (ADI-R), Autism Diagnostic Observation 

Schedule 2 (ADOS-2), the Childhood Autism Rating Scale, Second Edition (CARS-2), and the Korean 

Developmental Screening Test for Infants & Children (K-DST), developed by the Ministry of Health and 

Welfare and the Korean Pediatric Society in 2014 [4, 5]. 

ASD typically manifests in early childhood, with early screening possible from a very young age. Reports 

indicate that symptoms may be detectable in children younger than one year old [5]. Consequently, early 

screening is emphasized, as early intervention facilitated by such screening positively influences the 

developmental trajectory of ASD symptoms [5]. However, in South Korea, ASD recognition tends to occur 

later compared to other disorders, primarily due to a shortage of qualified medical professionals [6]. More 

critically, delays often result from parents or guardians failing to recognize early symptoms of ASD in their 

children [5]. Additionally, a lack of awareness and proactive measures among individuals in a child’s social 

environment, such as teachers and social workers, exacerbates this issue [7, 8]. 

Primary diagnostic indicators of ASD encompass various aspects such as communication abilities, social 

interactions, and repetitive behaviors [1]. However, communication and social interaction skills can sometimes 

be ambiguous when distinguishing ASD [1]. Therefore, repetitive and impulsive stereotypic behaviors are 

utilized as primary indicators in ASD identification. These stereotypic behaviors include body rocking, head 

banging, arm flapping, head shaking, jumping, and spinning [9]. These visually identifiable behaviors serve as 

reliable indicators for early diagnosis, enabling parents to recognize these behaviors in their children [7]. 

With the increasing significance of mechanically understanding human behavior, the application of artificial 

intelligence (AI) in behavior analysis has emerged as a prominent research area. Specifically, AI holds 

considerable potential in the diagnosis of ASD. Behavior recognition and analysis algorithms utilizing 

computer vision technologies have demonstrated the ability to identify and analyze behaviors in autistic 

children from video footage, classifying stereotypic behaviors such as arm flapping, head banging, and 

spinning [10]. The advancements in AI technologies have mitigated the previously existing ambiguities in 

ASD identification, facilitating more precise and rapid diagnoses. Moreover, the widespread availability of 

unregulated video formats on social media platforms such as YouTube, Vimeo, and Dailymotion has led to an 

exponential increase in video data. This proliferation of video content, combined with AI technologies, not 

only enhances early detection capabilities for ASD in children but also promotes continuous performance 

improvements and the democratization of these diagnostic methods. 

This study endeavors to enhance the efficiency of early autism screening by employing computer vision 

technology and machine learning algorithms to analyze video data of autistic children. Specifically, it focuses 

on the identification of stereotypic behaviors such as arm flapping, head banging, and spinning using 

uncontrolled video footage sourced from social network platforms like YouTube and TikTok, as well as the 

Self-Stimulatory Behavior Dataset (SSBD). By addressing the challenges associated with video quality and 

noise through the application of deep learning algorithms, this research offers substantial implications for the 

automated screening of autism symptoms prior to recognition by parents and caregivers. This innovative 

approach empowers individuals without specialized knowledge to detect symptoms at an early stage, thereby 
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facilitating timely intervention and the implementation of appropriate therapeutic strategies for autistic 

children. Consequently, this study has the potential to significantly accelerate the process of early diagnosis 

and intervention. 

 

2. LITERATURE REVIEW 

Conventional methodologies for the early diagnosis of Autism Spectrum Disorder (ASD) employ various 

diagnostic tools and behavioral assessments, which inherently possess limitations. Primarily, traditional 

methods rely on direct observations and structured interviews conducted by trained professionals, which, while 

effective, demand considerable resources, extensive expertise, and significant time investment. Early screening 

instruments such as the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation 

Schedule (ADOS) are frequently utilized for diagnosing ASD; however, their reliance on expert consultation 

does not expedite the initial identification process by parents [4]. Additionally, the Modified Checklist for 

Autism in Toddlers (M-CHAT) enables parents to observe their child's everyday behaviors and respond to 

specific questions to identify early signs of autism [11]. Traditional methods face limitations in immediate data 

access and continuous data measurement, necessitating research to enhance the speed and convenience of 

autism diagnosis through web and mobile platforms [7]. 

In a study by [6], the reliability of items in existing early screening tools was evaluated, leading to the 

development of a web-based system centered on verified items, allowing parents, teachers, and clinicians to 

identify disabilities early. Efforts persist in facilitating access to autism diagnosis via smart platform-based 

tools, enabling laypersons to easily evaluate autism, with results aligning significantly with medical diagnostic 

outcomes [7]. Research conducted by [12] utilizing smart tablet computers with touch-sensitive screens and 

inertial motion sensors highlighted the potential of identifying autism through smart device applications. The 

development of traditional screening tools and the application of smart platforms are particularly effective in 

environments with a shortage of medical professionals. However, the lack of awareness about screening tools 

and information on apps and web platforms among parents and other individuals interacting with the child 

poses a challenge in significantly improving the primary diagnostic speed. 

Recent studies employing computer vision technology play a pivotal role in detecting the characteristic 

stereotyped behaviors of ASD. Approaches leveraging artificial intelligence (AI) have demonstrated 

substantial improvements in the speed and accuracy of traditional ASD early screening, thereby significantly 

contributing to the detection of early signs [2]. For instance, [2] combined VGG-16 and Long-term Recurrent 

Convolutional Network (LRCN) to identify and classify hand flapping in the Self-Stimulatory Behavior 

Dataset (SSBD), which comprises videos of autistic children recorded in uncontrolled environments. In 

another study, [13] employed an adjusted MobileNetV2 model and extracted features from hand landmarks 

detected by MediaPipe, predicting hand flapping in SSBD videos using a Long Short-Term Memory Network 

(LSTM). Furthermore, [14] trained a three-class classifier within a Bag Of Words (BOW) framework to 

classify arm flapping, head banging, and spinning behaviors using Space-Time Interest Points (STIP) and 

Harris3D detectors. Additionally, [1] tested various local descriptors used in the Bag-of-Visual-Words 

approach with Multi-layer Perceptron (MLP), Gaussian Naive Bayes (GNB), and Support Vector Machines 

(SVM) classifiers to identify stereotypic behaviors (arm flapping, head banging, spinning) associated with 

ASD. Lastly, [10] utilized EfficientNets, MobileNetV3, ShuffleNet, ESNet, ResNet, and Inflated 3D ConvNet 

(I3D) to extract features and recognized behaviors using Long Short-Term Memory (LSTM), Temporal 

Convolutional Network (TCN), Multi-Stage Temporal Convolutional Network (MS-TCN), and MS-TCN++ 

to identify and classify stereotypic behaviors. 

These prior studies aim to identify early signs of autism by analyzing video data of autistic children, thereby 



Utilizing Deep Learning for Early Diagnosis of Autism: Detecting Self-Stimulatory Behavior                          

      

improving early screening speed and enabling timely intervention for autistic children. This study, sharing the 

same objective, seeks to identify stereotypic behaviors such as arm flapping, head banging, and spinning in 

autistic children using uncontrolled video footage. The study aims to address challenges posed by video quality 

and noise through the application of deep learning algorithms, holding significant implications for the potential 

automated screening of autism symptoms through everyday recorded videos before parents and caregivers can 

identify the symptoms. This approach allows individuals without specialized knowledge to recognize 

symptoms early, thereby promoting early intervention and appropriate therapeutic strategies for autistic 

children. 

 

3. METHOD 

This research employs several advanced deep learning architectures to enhance the recognition of behavioral 

patterns through sophisticated feature extraction and temporal continuity analysis. Firstly, the study augments 

traditional Long Short-Term Memory (LSTM) networks by incorporating a Convolutional Long Short-Term 

Memory (ConvLSTM) network. This adaptation introduces convolutional structures to both the input-to-state 

and state-to-state transitions, thereby rendering the architecture particularly adept at capturing spatiotemporal 

correlations. This capability makes ConvLSTM highly suitable for tasks that involve both spatial and temporal 

dependencies, such as video-based action recognition. ConvLSTM’s ability to preserve spatial information 

through convolutional operations facilitates more precise modeling of the dynamic nature of video data, 

thereby enhancing prediction performance in scenarios characterized by significant temporal variation[15]. 

Secondly, the methodology integrates a Long-term Recurrent Convolutional Network (LRCN) approach. 

LRCNs synergize the strengths of Convolutional Neural Networks (CNNs) for feature extraction with those 

of LSTMs for sequence modeling. This approach effectively bridges the gap between spatial and temporal 

analysis by initially leveraging CNNs to extract spatial features from each frame, which are subsequently fed 

into LSTM units to capture temporal dynamics across frames. This amalgamation allows for a more nuanced 

understanding and prediction of behaviors over extended sequences, thereby augmenting the model’s 

capability to manage complex temporal dependencies [16]. Finally, to further refine the recognition of 

behavioral patterns, an integrated deep learning architecture combining Convolutional Neural Networks 

(CNNs) and Gated Recurrent Units (GRUs) is employed. The primary objective of this architecture is to 

accurately classify and predict diverse behaviors captured in video footage, with particular emphasis on 

analyzing dynamic and complex behavior patterns within a temporal context. CNNs serve as robust visual 

feature extractors, identifying critical information in each frame. Concurrently, GRUs model the temporal 

continuity between these features, facilitating a comprehensive understanding and prediction of behaviors 

across entire video sequences. This integrated approach effectively addresses the inherent complexities of 

video data, including temporal variations, thereby transcending the limitations of simple image recognition. 

This study leverages these advanced architectures—ConvLSTM, LRCN, and CNN-GRU frameworks—to 

identify stereotypical behaviors in children with autism, with the aim of determining the most suitable 

architecture for analyzing videos with low resolution and high noise levels. 

 

3.1 ConvLSTM Approach 

 

The ConvLSTM model architecture employed in this study is meticulously designed to capture and analyze 

spatiotemporal dependencies inherent in video data. Utilizing a Sequential model framework, the architecture 

commences with a ConvLSTM2D layer comprising 4 filters and a 3x3 kernel, utilizing 'tanh' activation and a 

recurrent dropout rate of 0.2. This initial layer is adept at processing input sequences with defined dimensions, 

accommodating the temporal sequence length and spatial dimensions of 128x128 pixels across three color 

channels. As shown in Figure 1, the model's structure visualizes the systematic arrangement of layers to 

enhance feature extraction and temporal continuity. The model incorporates additional ConvLSTM2D layers 

with increasing complexity, comprising 8, 14, and 16 filters, respectively. Each ConvLSTM2D layer is 
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followed by MaxPooling3D layers to effectively reduce spatial dimensions and TimeDistributed Dropout 

layers for rigorous regularization. The hierarchical stacking of these layers allows for the extraction of intricate 

spatiotemporal patterns, crucial for accurate behavior recognition. The final stage of the architecture involves 

flattening the output from the ConvLSTM layers, followed by a Dense layer with a softmax activation function, 

which yields probability distributions across the target classes. This comprehensive approach, integrating 

convolutional and recurrent layers with strategic regularization techniques, ensures robust and precise 

modeling of dynamic video data, particularly suited for behavior recognition tasks within the spatial constraints 

of 128x128 pixels. 

 

Figure 1. Model Structure(ConvLSTM)                 Figure 2. Model Structure(LRCN) 

3.2 LRCN Approach 

 

The LRCN (Long-term Recurrent Convolutional Network) model architecture developed in this study 

effectively combines convolutional neural networks (CNNs) for spatial feature extraction and long short-term 

memory (LSTM) networks for temporal sequence modeling. This architecture is implemented using a 

Sequential framework, ensuring a systematic flow of data. As depicted in Figure 2, the model's structure 

illustrates the layered configuration starting with a TimeDistributed Conv2D layer featuring 16 filters and a 

3x3 kernel, employing 'relu' activation and 'same' padding, designed to handle input sequences with spatial 

dimensions of 128x128 pixels across three color channels. This layer is followed by a TimeDistributed 

MaxPooling2D layer (4x4) and a TimeDistributed Dropout layer (0.25) for spatial dimension reduction and 

regularization, respectively. Subsequent layers include additional TimeDistributed Conv2D layers with 32 and 

64 filters, each followed by corresponding MaxPooling2D and Dropout layers. This hierarchical convolutional 

structure enables the extraction of increasingly complex features while mitigating overfitting. Post 

convolutional operations, a TimeDistributed Flatten layer converts 2D feature maps into 1D vectors, preparing 

the data for the LSTM layer. The LSTM layer, with 32 units, captures temporal dependencies, facilitating the 

understanding of dynamic sequences. The final Dense layer, employing a softmax activation function, 

produces class probability distributions. This integrated approach, combining CNNs for spatial analysis and 

LSTMs for temporal dynamics, is optimal for video-based behavior recognition within 128x128 pixel spatial 

constraints. The model summary elucidates the architecture's detailed configuration, ensuring reproducibility 

and clarity. By leveraging this advanced LRCN framework, the study aims to achieve robust behavior pattern 

recognition in video data, demonstrating the model's efficacy in handling both spatial and temporal 

complexities. 

3.3 CNN+GRU Approach 
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The study utilizes the pre-trained ResNet50 architecture as a feature extractor to transform raw video frames 

into robust feature representations. The CNN processes image data and extracts high-level features that 

encapsulate essential visual information necessary for recognizing complex behaviors within video data. As 

illustrated in Figure 3, this processing is applied to each frame of the segmented video clips, with the CNN's 

hyperparameters set to an image size of 224x224 and a batch size of 64, facilitating effective model learning 

and convergence. The extracted feature representations are then adapted to the specific task and prepared for 

subsequent processing by a recurrent neural network. 

To model the sequential temporal relationships between video frames and enhance prediction accuracy, the 

study employs Gated Recurrent Units (GRUs). The model utilizes a multi-layer GRU network, sequentially 

configured with layers containing 64, 32, 32, and 16 units, respectively. A dropout rate of 0.5 is applied to the 

intermediate layers to mitigate overfitting. This configuration effectively captures the temporal characteristics 

of each video clip, learning both spatial and temporal features from the high-dimensional features extracted by 

the CNN. The output from the final GRU layer is passed through a softmax layer to classify the video clips 

into predefined categories. The model is trained on a multi-class classification problem using the Adam 

optimizer and a cross-entropy loss function. During training, 20% of the dataset is reserved for validation to 

evaluate the model's generalization capability, and the best-performing model is saved. This process is crucial 

for preventing overfitting to the training data and enhancing the model's prediction accuracy on real-world 

data. 

Figure 3. Model Structure(CNN+GRU) 

4. DATESET/EXPERIMENT 

4.1 Data 

 

In this study, the data was constructed based on the Self-Stimulatory Behavior Dataset (SSBD) collected by 

[14]. The SSBD comprises video data collected under uncontrolled conditions from platforms such as 

YouTube, Vimeo, and Dailymotion, accompanied by corresponding annotations. The dataset is categorized 

into three types based on autistic behavior characteristics: Arm Flapping, Head Banging, and Spinning. 

Originally, the SSBD included 75 videos; however, due to accessibility issues over time and the presence of 

noise that made 16 videos difficult to discern, only 59 videos were used. The SSBD fundamentally utilizes 

annotations as its primary data format. Figure 4 illustrates an example of the SSBD annotation format, which 

includes information on <url>, <height>, <width>, <frames>, <persons>, <duration>, <conversation>, 

<behaviour>, <category>, <time>, <bodypart>, <intensity>, and <modality>. Additionally, in this study, 32 

more videos were collected through social networking services such as YouTube and TikTok, expanding the 

dataset to a total of 91 videos. The newly collected videos comprise 8 for Arm Flapping, 9 for Head Banging, 

and 15 for Spinning, and these also adhere to the xml-based annotation format used in the original SSBD. The 

overall dataset utilizes only the tags <url>, <height>, <width>, <frames>, <duration>, <behaviour>, 

<category>, and <time> from the SSBD annotations, which were deemed necessary for this research. Similarly, 
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the annotations for the additional videos correspond to these tags. The resolution of the dataset videos ranges 

from a minimum of 184 x 144 pixels to a maximum of 1280 x 1280 pixels. The additional data were collected 

from YouTube and TikTok as follows. 

The additional videos were collected from YouTube and TikTok using the following steps: 

1. Data queries included terms such as 'Autism, stimming + headbanging, stimming + armflapping, 

stimming + spinning, autism + headbanging, autism + armflapping, and autism + spinning.' 

2. The filter 'Sort by' was set to 'Upload date' to collect data from the past six years. 

3. Collected videos were selected based on the following criteria: 

o A clearly identifiable single individual exhibiting Autism symptoms. 

o Identifiable behavior.  

The final selected data were converted into XML format. Figure 5 presents example images for each category: 

'Arm Flapping,' 'Head Banging,' and 'Spinning.' The composition of the final dataset is presented in Table 1. 

 

Table 1. Summary of Video Counts by Stereotypic Behavior 

 Armflapping Headbanging Spinning Total 

SSBD 25 25 25 75 

Deleted Videos 4 7 5 16 

Added Videos 8 9 15 32 

Total 29 27 35 91 

 

Figure 4. SSBD Annotation 
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Figure 5. Example images for each category: 'Arm Flapping', 'Head Banging', and 'Spinning' 

 

4.2 Preprocessing 

 

The transformation of raw video frames into robust feature representations is crucial for effective processing 

in behavioral analysis. Initially, segments corresponding to stereotypic behaviors of autistic children, 

specifically Arm Flapping, Head Banging, and Spinning, were isolated from each video. Subsequently, the 

videos were annotated and categorized into four distinct classes: Arm Flapping, Head Banging, Spinning, and 

Normal. The 'Normal' category was derived from the remaining portions of the video after extracting clips 

exhibiting stereotyped behaviors. This process involved splitting the downloaded videos into clips based on 

XML annotations, categorizing the behavior, and further subdividing the clips into smaller segments if their 

duration exceeded five seconds. The video data were then converted into a format amenable to frame-level 

analysis. To enhance the preprocessing pipeline, several meticulous steps were undertaken to ensure data 

consistency and quality. Firstly, frames were extracted from each video at regular intervals, resized to a fixed 

resolution of 224x224 pixels, and normalized to ensure pixel values ranged between 0 and 1. This 

standardization facilitated uniform representation of each video by a consistent sequence of frames suitable 

for subsequent analysis. Moreover, a balanced dataset was created by selectively sampling the 'Normal' class, 

ensuring it constituted 70% of the total data. This approach mitigated class imbalance and enhanced the 

robustness of the training process. The extracted frames and their corresponding labels were subsequently 

converted into numpy arrays for efficient storage and processing. In the final preprocessing step, the data were 

stratified into training and test datasets, with 80% allocated for training and the remaining 20% reserved for 

testing. The distribution of the final dataset is presented in Table 2. These preprocessing steps were essential 

in transforming raw video data into a structured format, thereby enabling effective frame-level analysis for the 

identification and classification of stereotypic behaviors in autistic children. 
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Table 2. Summary of Clip Counts by Stereotypic Behavior (SSBD+New) 

 Armflapping Headbanging Spinning Normal Total 

Train 466 319 536 709 2030 

Test 116 79 133 177 505 

Total 582 398 669 886 2535 

 

4.3 Experiment 

 

In this study, experiments were conducted using three models—ConvLSTM, LRCN, and CNN+GRU—on 

both the original SSBD dataset and an augmented dataset that combined the SSBD data with additional video 

segments. These datasets comprised video frames extracted from recordings of autistic children's stereotypic 

behaviors, categorized into Arm Flapping, Head Banging, Spinning, and Normal. The 'Normal' category 

consisted of video segments not exhibiting stereotypic behaviors, derived from the residual portions of the 

videos after behavioral clips were extracted. 

For these experiments, the ConvLSTM model, which integrates convolutional layers with Long Short-Term 

Memory (LSTM) units, was employed to capture both spatial and temporal features from the video frames. 

The model was compiled using the categorical cross-entropy loss function and optimized with the Adam 

optimizer. The training process was regulated by an early stopping callback, which monitored the validation 

loss with a patience of 10 epochs and restored the best model weights upon termination. The ConvLSTM 

model was trained for a maximum of 200 epochs with a batch size of 4, employing 80% of the data for training 

and 20% for validation. This model achieved an accuracy of 66.85% on the overall dataset and 66.47% on the 

original SSBD dataset. 

The Long-term Recurrent Convolutional Network (LRCN) model, which combines convolutional neural 

networks (CNNs) for spatial feature extraction with LSTM units for sequential data processing, was also 

utilized. This model was compiled with the categorical cross-entropy loss function and Adam optimizer. An 

early stopping callback with a patience of 15 epochs was implemented to avoid overfitting. The LRCN model 

was trained for up to 200 epochs with a batch size of 4, using an 80-20 split for training and validation. The 

LRCN model demonstrated superior performance, achieving an accuracy of 79.61% on the overall dataset and 

79.37% on the original SSBD dataset. 

The CNN+GRU model was developed to leverage convolutional layers for feature extraction and Gated 

Recurrent Units (GRUs) for handling temporal dependencies. This model was trained over 100 epochs. The 

training data were partitioned with 80% allocated for training and 20% for testing. To ensure balance among 

the labels, a sampling process was applied, and an under-sampling technique was employed for the 'Normal' 

label due to its larger volume compared to other labels. Additionally, 20% of the training data were randomly 

extracted to form a validation dataset, which was used to periodically evaluate the model's performance during 

training. This validation dataset was crucial in preventing overfitting and maintaining the model's 

generalization capability. The optimization of the model was conducted based on its performance on the 

validation data, with the model demonstrating the best performance selected as the final model. The 

CNN+GRU model achieved an accuracy of 62% on the overall dataset and 53% on the original SSBD dataset. 

The experimental results underscore that the LRCN model attained the highest accuracy, followed by the 

ConvLSTM model, with the CNN+GRU model exhibiting the lowest accuracy across both datasets. These 

findings highlight the importance of selecting appropriate architectures for the analysis of complex video data, 

particularly in the context of identifying and classifying stereotypic behaviors in autistic children. 
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5. DISCUSSON 

This study aimed to augment the early detection and intervention response for autism by empowering parents 

and caregivers to identify early symptoms in children. To achieve this objective, the research expanded the 

existing Self-Stimulatory Behavior Dataset (SSBD) by incorporating additional datasets, resulting in a 

comprehensive, extended dataset. This enriched dataset was utilized to train and evaluate three distinct deep 

learning architectures: ConvLSTM, LRCN, and CNN+GRU. 

The ConvLSTM model, which integrates convolutional layers with Long Short-Term Memory (LSTM) 

units, achieved an accuracy of 66.85% on the overall dataset and 66.47% on the original SSBD dataset. The 

Long-term Recurrent Convolutional Network (LRCN) model, combining Convolutional Neural Networks 

(CNNs) for spatial feature extraction with LSTM units for sequential data processing, demonstrated superior 

performance, with an accuracy of 79.61% on the overall dataset and 79.37% on the original SSBD dataset. 

The CNN+GRU model, designed to leverage convolutional layers for feature extraction and Gated Recurrent 

Units (GRUs) for temporal dependencies, achieved an accuracy of 62% on the overall dataset and 53% on the 

original SSBD dataset. 

These results indicate that while there remains scope for performance enhancement, the LRCN model, in 

particular, exhibits significant potential for accurately identifying stereotypical behaviors in children with 

autism from video recordings. This capability could substantially improve the speed and reliability of early 

autism interventions, especially in settings where professional medical expertise is not readily accessible.  

The study underscores the critical importance of utilizing an expanded dataset to enhance the precision of 

automated identification models for early autism detection. By leveraging a more comprehensive dataset, the 

models demonstrated improved capacity to identify stereotypic behaviors, thereby enhancing accuracy and 

robustness. Moreover, the findings highlight the potential for rapid preliminary identification of autism 

symptoms by non-specialists such as parents, caregivers, and educators. This capability could facilitate earlier 

interventions and support for children, thereby mitigating the challenges associated with delayed diagnosis. 

 

6. CONCLUSION 

This study provides compelling evidence that expanding the dataset used to train deep learning models 

markedly improves the accuracy of automated systems designed for the early detection of autism spectrum 

disorder (ASD). Among the evaluated models, the Long-term Recurrent Convolutional Network (LRCN) 

demonstrated superior accuracy, underscoring its considerable potential for practical application in early 

autism detection, especially within resource-constrained settings. 

The findings of this research highlight the critical role of equipping non-specialists, such as parents and 

caregivers, with advanced tools powered by these models. Such empowerment can significantly enhance the 

timeliness and effectiveness of early identification and intervention efforts, which are crucial for optimizing 

developmental outcomes in children with autism. 

Future research directions should emphasize the continuous expansion of datasets through automated 

collection techniques and focus on iterative model refinement to further enhance detection capabilities. These 

advancements are expected to not only make autism diagnosis more accessible but also broaden the 

involvement of non-specialist individuals in the early detection process, thereby improving long-term 

prognoses for children with ASD. 
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