• Title/Summary/Keyword: reperfusion

Search Result 594, Processing Time 0.022 seconds

Neuroprotection of Dexmedetomidine against Cerebral Ischemia-Reperfusion Injury in Rats: Involved in Inhibition of NF-κB and Inflammation Response

  • Wang, Lijun;Liu, Haiyan;Zhang, Ligong;Wang, Gongming;Zhang, Mengyuan;Yu, Yonghui
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2017
  • Dexmedetomidine is an ${\alpha}2$-adrenergic receptor agonist that exhibits a protective effect on ischemia-reperfusion injury of the heart, kidney, and other organs. In the present study, we examined the neuroprotective action and potential mechanisms of dexmedetomidine against ischemia-reperfusion induced cerebral injury. Transient focal cerebral ischemia-reperfusion injury was induced in Sprague-Dawley rats by middle cerebral artery occlusion. After the ischemic insult, animals then received intravenous dexmedetomidine of $1{\mu}g/kg$ load dose, followed by $0.05{\mu}g/kg/min$ infusion for 2 h. After 24 h of reperfusion, neurological function, brain edema, and the morphology of the hippocampal CA1 region were evaluated. The levels and mRNA expressions of interleukin-$1{\beta}$, interleukin-6 and tumor nevrosis factor-${\alpha}$ as well as the protein expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-${\kappa}Bp65$, inhibitor of ${\kappa}B{\alpha}$ and phosphorylated of ${\kappa}B{\alpha}$ in hippocampus were assessed. We found that dexmedetomidine reduced focal cerebral ischemia-reperfusion injury in rats by inhibiting the expression and release of inflammatory cytokines and mediators. Inhibition of the nuclear factor-${\kappa}B$ pathway may be a mechanism underlying the neuroprotective action of dexmedetomidine against focal cerebral I/R injury.

Effect of MCT (medium-chain triglyceride) and LCT (long-chain triglyceride) on Myocardial Ischemia/Reperfusion Injury and Platelet Aggregation in Rat (MCT(medium-chain triglyceride) 및 LCT(long-chain triglyceride) 유제가 백서에서 허혈/재관류 심장기능손상 및 혈소판응집능에 미치는 영향)

  • Lee, Soo-Hwan;Jung, Yi-Sook;Hong, Jeong;Kim, Min-Hwa;Lee, Hee-Joo;Baik, Eun-Joo;Wang, Hee-Jung;Kim, Myung-Wook;Moon, Chang-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.6 no.4
    • /
    • pp.358-363
    • /
    • 1998
  • Intravenous lipid emulsion is used extensively as a major component of parenteral nutrition for patients in the surgical intensive care unit. Abnormal cardiovascular function related to lipid infusion has been reported although conflicting results exist. In the present study, we investigated the effects of intravenous emulsions of long-chain triglyceride (LCT) and medium-chain triglyceride (MCT) on myocardial ischemia/ reperfusion injury and on platelet aggregation in rat. There was no difference between LCT and MCT considering the effects on left ventricular developed pressure (LVDP) and coronary flow rate (CFR) before and after ischemia/reperfusion in isolated rat heart. On the other hand, a difference was found between LCT and MCT with regard to their effects on heart rate (HR) and end diastolic pressure (EDP) after ischemia/reperfusion. After ischemia/reperfusion, HR was significantly (P<0.05) reduced and EDP significantly (P<0.05) inc.eased by LCT (18$\pm$2.0% and 42.8$\pm$8.9%, respectively), but not by MCT Ex vivo platelet aggregation induced by collagen was reduced by LCT infusion, but not by MCT These findings suggest that MCT may have slightly more favorable effect than LCT on the myocardial function after ischemia/reperfusion in rat.

  • PDF

A Study on Reperfusion Arrhythmia III. Relationship to Hemodynamics Changes and Occurrence of Reperfusion Arrhythmia after Occlusion of Coronary Artery in Dogs (Reperfusion Arrhythmia에 관한 연구 III. 관상동맥 폐색시의 혈액동력학적인 변화와 RA발생과의 관계)

  • 최인혁;정인성;최은경;김희은
    • Journal of Veterinary Clinics
    • /
    • v.18 no.4
    • /
    • pp.402-410
    • /
    • 2001
  • This study was performed to investigate the hemodynamic changes which occur after occlusion of coronary artery and relation to reperfusion arrhythmias(RA) which occur when occlusion materials were removed form coronary artery in dogs. The occlusion of coronary artery was designed by temporary ligation of left circumflex branch of coronary artery during 30 minutes in 16 dogs. During occlusion of coronary artery, cardiac output(CO), mean aortic pressure (mAP), aortic systolic pressure(ASP), aortic diastolic pressure(ADP). left ventricular systolic pressure(LVSP), left ventricular maximum dp/dt (LV max. dp/dt) and left ventricular end-diastolic pressure (LVEDP) were measured. The occurrence of RA were observed for 5 minute after reperfusion by explained of ligation. As a results, cardiac arrest occurred in 4 dogs during occlusion of coronary artery, and RA was not observed in 5 dogs while it was seen in 5 dogs when explained ligation(reperfusion) after 30 minutes, the rest 2 dogs occurred temporary tachycardia. In hemodynamics changes, LVSP decreased by 10.9% and LV max. dp/dt by 5.4 % in comparison to control value which not ligated coronary artery, and LVEDP increased by 73.3%. The CO/min and mAP also decreased by 10.7% and by 11.3% expectedly. In the relationship to occurrence RA and hemodynamics changes, the LVSP and LV max. dp/dt at the time of occlusion in the RA group decreased by 11.9% and 0.8% in comarison to the control value while the decrease was 7.7% and 10% in the non-RA group. But the LVEDP in creased by 109.1% in the RA group while the decreased was 44.6% in the non-RA group. Referring CO/min, the drop was 8.8% in the RA occurrence group and 12.9% in the non-occurence group. These parameters of LVEDP, LV max. dp/dt, and CO were significant difference(p<0.05). The mAP also decreased by 11.9 in the RA group and by 9.8% in the non-RA group, but these defference were not the significant difference.

  • PDF

Hot Water Extract of Triticum aestivum L. (Common Wheat) Ameliorates Renal Injury by Inhibiting Apoptosis in a Rat Model of Ischemia/Reperfusion

  • Baek, Hae Sook;Lim, Sun Ha;Ahn, Ki Sung;Lee, Jong Won
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.7-15
    • /
    • 2013
  • Objectives : Interruption and subsequent restoration of blood flow into the kidney result in renal injury. As an approach to preventing the renal injury, we determined the optimal conditions and the underlying mechanisms by which supernatant of hot water extract of ground Triticum aestivum L. (extract) attenuated ischemia/reperfusion (I/R) injury. Methods : One hour after administration of the extract (400 mg/kg) by intraperitoneal injection, renal I/R injury was generated by clamping the left renal artery in rats after surgical removal of the right kidney, followed by reperfusion. The maximal difference between the vehicle-treated and the extract-treated group under ketamine/xylazine or enflurane anesthetization was assessed at varying periods of ischemia (30-45 min) and reperfusion (3-48 hr), based on the renal function assessed with serum creatinine levels, tissue injury with hematoxylin/eosin staining, and apoptosis with terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling staining. Results : Enflurane anesthetization with 40 min of ischemia and 24 hr of reperfusion was identified to be the optimal condition, under which condition serum creatinine levels and tubular damage in the extract-treated group were significantly reduced compared with those in the vehicle-treated group ($1.3{\pm}0.2$ versus $2.7{\pm}0.3$ mg/dL, P < 0.01, and average score $1.8{\pm}0.1$ versus $3.5{\pm}0.3$, P < 0.01, respectively). These beneficial effects were mediated by inhibition of apoptotic cascades through attenuation of renal tissue malondialdehyde levels, Bax/Bcl-2 ratio and caspase-3 levels. Conclusions : The extract conferred renal protection against ischemia/reperfusion injury in rats by scavenging reactive oxygen species and consequently blocking apoptotic cascades, plausibly augmented by enflurane protection.

Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling

  • Canmin Zhu;Dili Wang;Chang Chang;Aofei Liu;Ji Zhou;Ting Yang;Yuanfeng Jiang;Xia Li;Weijian Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 ㎍/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 ㎍/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.

A model of Isolated Renal Hemoperfusion (허혈/재관류 손상연구를 위한 체외 신장 재관류 모델)

  • Nam, Hyun-Suk;Woo, Heung-Myong
    • Journal of Veterinary Clinics
    • /
    • v.26 no.5
    • /
    • pp.441-444
    • /
    • 2009
  • Ischemia-reperfusion (I/R) injury is associated with an increased risk of acute rejection, delayed graft function and long-term changes after kidney transplantation. The reperfusion models remain unsolved complications such as vascular obstruction and blood leakage. We developed an alternative model of isolated hemoperfusion in porcine kidneys. In the present study we introduced a newly developed reperfusion method. A connector was used instead of surgical suture for the vascular anastomosis on the inguinal region in which main femoral vessels are parallel and big enough to perfuse the kidney. To assess renal perfusion quality of the modified hemoreperfusion model, we analyzed both hemodynamic values and patterns of I/R injury following a renal reperfusion. Following unilateral nephrectomy, the kidneys were preserved for 0, 24 and 48 hours at $4^{\circ}C$ with histidine-tryptophan ketogluatarate (HTK) solution and reperfused for 3 hours by vascular anastomosis connected to the femoral artery and vein in inguinal region. Histolopathological examinations were assessed on kidney biopsy specimens, taken after each cold storage and reperfusion. No differences of hemodynamic values were observed between aorta and femoral artery. The average warm ischemia time before reperfusion start was $7.0{\pm}1.1$ minutes. There were no complications including vascular obstruction and blood leakage during the reperfusion. I/R injury of the perfused kidneys in this model was dependent upon the cold ischemia time. The results support that the modified perfusion model is simple and appropriate for the study of early renal I/R injury and transplant immunology.

Expression of Intercellular Adhesion Molecule- 1 after Ischemia Reperfusion Injury of the Canine Lung (폐장의 허혈-재관류 손상과 세포간부착물질-1 의 발현)

  • 성숙환;김영태;김문수;이재익;강문철
    • Journal of Chest Surgery
    • /
    • v.35 no.2
    • /
    • pp.87-93
    • /
    • 2002
  • Background: Predicting the important role of intercellular adhesion molecule-1 expression on the acute ischemia-reperfusion injury, we set out to demonstrate it by assessing the degree of expression of ICAM-1 after warm ischemia-reperfusion in canine unilateral lung ischemia model. Material and Method: Left unilateral lung ischemia was induced by clamping the left hilum for 100 minutes in seven adult mongrel dogs. After reperfusion, various hemodynamic pararmeters and blood gases were analyzed for 4 hours, while intermittently clamping the right hilum in order to allow observation of the injured Ieft lung function. The pulmonary venous blood was collected serially to measure TNF- and cICAM-1 level. After 4 hours of reperfusion, the lung tissue was biopsied to assess cICAM-1 expression, and to measure tissue malondialdehyde(MDA) and ATP level. Result: The parameters including arterial oxygen partial pressure, pulmonary vascular resistance and tissue MDA and ATP level suggested severe lung damage. Serum TNF-$\alpha$ level was 8.76$\pm$2.37 ng/ml at 60 minutes after reperfusion and decreased thereafter. The cICAM-1 level showed no change after the reperfusion during the experiment. The tissue cICAM-1 expression was confirmed in 5 dogs. Conclusion: The increase of TNF-$\alpha$ Ievel and expression of tissue ICAM-1 were demonstrated after ischemia reperfusion injury in canine lung model.

Effects of a Pan Selectin Inhibitor on Renal Injury after Kidney Transplantation in Dogs (개의 신장이식에서 신장손상에 대한 Pan Selectin Inhibitor의 효과)

  • Woo, Heung-Myong
    • Journal of Veterinary Clinics
    • /
    • v.19 no.3
    • /
    • pp.299-302
    • /
    • 2002
  • Selectins are differentially expressed carbohydrate binding proteins involved in the initiation of tissue inflammation by mediating the rolling and tethering of leukocytes on the vascular endothelium. This primary event in initiation of inflammation, as occurs during reperfusion injury, can be therapeutically targeted using selectin inhibitors, which generally block binding of sLex to E-, P-, and L-selectins. The objective of this study was to determine the role of selectins in renal ischemia/reperfusion injury after kidney transplantation. Canine kidneys were subjected to 60-min warm ischemia, flushed with UW solution, cold stored for 24 h, and autotransplanted into the nephrectomized donor. Renal autografts were monitored for 7 days by serum creatinine in the first study and by histology and myeloperoxidase activity after 4-hour reperfusion in the second study. In each study, one group of animals received TBC1269 (selectin inhibitor) and the other received saline vehicle. Serum creatinine rose quickly after transplantation and was not different between the groups. TBC1269 abolished a reperfusion-induced 2-fold increase in renal cortex neutrophil infiltration and improved histologic signs of ischemia after 4 hours of reperfusion. Selectin blockade does not improve the course of injury caused by warm renal ischemia. A minor benefit associated with the inhibition of early inflammation during reperfusion after kidney transplantation seems to occur.

A Study on the Protective Effect of Antioxidants on Damage Induced by Liver Ischemia/Repefusion in a Rat Model (모델 랫드에 간 허혈/재관류로 유발된 손상에 대한 항산화제의 보호 효과에 관한 연구)

  • Ahn, Yong Ho;Seok, Pu Reum;Oh, Su Jin;Choi, Jin Woo;Shin, Jae-Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.370-378
    • /
    • 2019
  • The hepatic ischemic model has recently been widely used for the epidemiological study of ischemic reperfusion injury. This study was carried out to investigate the protective effect of vanillin, which is known to have antioxidant and anti-inflammatory effects, against hepatic and renal injury using an ischemia-reperfusion rat model, and we also investigated the mechanism related to vanillins' protective effect. The test material was administered at a concentration of 100 mg/kg for 3 days, followed by ligation of the liver for 60 minutes to induce ischemia reperfusion. As control groups, there was a negative control, sham control and ischemia-reperfusion-only ischemia reperfusion control, and the controls groups were compared with the drug administration group. In the vanillin group, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were significantly inhibited compared with the AST and ALT activities of the ischemia-reperfusion group, and histopathological examination showed significant reduction of both inflammation and necrosis. The malondialdehyde (MDA) and superoxide dismutase (SOD) levels were significantly different from the ischemia-reperfusion group. In conclusion, vanillin showed a hepatocyte protective action by alleviating the cellular inflammation and cell necrosis caused by hepatic ischemia-reperfusion, and vanillin mitigated inflammatory changes in the kidney glomeruli and distal tubules. The protective effect is considered to be caused by vanillin's antioxidant function. Further studies such as on cell death and possibly vanillin's same effect on damaged tissue will be necessary for clinical applications such as organ transplantation.

Trolox C Ameliorates Hepatic Drug Metabolizing Dysfunction After Ischemia/Reperfusion

  • Eum, Hyun-Ae;Lee, Sang-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.940-945
    • /
    • 2002
  • The present study was done to determine the effect of trolox C, a hydrophilic analogue of vitamin E, on hepatic injury, especially the alteration in cytochrome P-450 (CYP)-dependent drug metabolism during ischemia and reperfusion (I/R). Rats were subjected to 60 min of hepatic ischemia and 5 h of reperfusion. Rats were treated intravenously with trolox C (2.5 mg/kg) or vehicle (PBS, pH 7.4), 5 min before reperfusion. Serum alanine aminotransferase and lipid peroxidation levels were markedly increased after I/R. This increase was significantly suppressed by trolox C. Cytochrome P-450 content was decreased after I/R but was restored by trolox C. There were no significant differences in ethoxyresorufin O-dealkylase (CYP 1A1) and methoxyresorufin O-dealkylase (CYP 1A2) activities among any of the experimental groups. Pentoxyresorufin O-dealkylase (CYP 2B1) activity was decreased and aniline p-hydroxylase (CYP 2E1) activity was increased after I/R. Both these changes were prevented by trolox C. Our findings suggest that trolox C reduces hepatocellular damage as indicated by abnormalities in microsomal drug-metabolizing function during I/R, and that this protection is, in part, caused by decreased lipid peroxidation.