• Title/Summary/Keyword: reperfusion

Search Result 605, Processing Time 0.031 seconds

Attenuation of Renal Ischemia-Reperfusion Injury by Antioxidant Vitamins in Pigs (돼지의 신장에서 Antioxidant Vitamins에 의한 허혈 및 재관류 손상의 감소에 관한 연구)

  • Kim, Myung-Jin;Lee, Soo-Jin;Park, Chang-Sik;Son, Hwa-Young;Jun, Moo-Hyung;Jeong, Seong-Mok;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.94-98
    • /
    • 2007
  • This study was to investigate the effects of ascorbic acid and alpha-tocopherol on the attenuation of renal ischemia-reperfusion (IR) injury in pigs. Ten pigs were subjected to 60 minutes of warm unilateral renal ischemia followed by removal of contralateral kidney and then divided into two groups. Treatment group was performed ascorbic acid and alpha-tocopherol pretreatment 2 days before operation and ascorbic acid with heparin-saline solution irrigation-aspiration. Otherwise, control group used only irrigation-aspiration of heparin-saline solution. Blood samples were collected from these pigs for measurement of serum blood urea nitrogen (BUN) and creatinine values, antioxidant superoxide dismutase (SOD) at pre, day 1, day 3, day 7 and day 14. The kidneys were taken for histopathologic evaluation after euthanasia on postoperative day 14. The levels of BUN were significantly increased in the control group on day 1, day 3 and day 7 (P<0.05). And the level of creatinine was significantly increased in the control group on day 3 (p<0.05). Activity of antioxidant enzymes in plasma revealed significant difference (p<0.05) between control and treatment group at day 14. In histopathologic findings, treatment group was showed less damage than that of control group on the basis of renal tubular damage. It was concluded that ascorbic acid and alpha-tocopherol attenuated renal I/R injury in the pigs.

Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/Reperfusion Injury during Liver Transplantation

  • Kwon, Jae Hyun;Lee, Jooyoung;Kim, Jiye;Kirchner, Varvara A.;Jo, Yong Hwa;Miura, Takeshi;Kim, Nayoung;Song, Gi-Won;Hwang, Shin;Lee, Sung-Gyu;Yoon, Young-In;Tak, Eunyoung
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.672-685
    • /
    • 2019
  • Currently, liver transplantation is the only available remedy for patients with end-stage liver disease. Conservation of transplanted liver graft is the most important issue as it directly related to patient survival. Carbonyl reductase 1 (CBR1) protects cells against oxidative stress and cell death by inactivating cellular membrane-derived lipid aldehydes. Ischemia-reperfusion (I/R) injury during living-donor liver transplantation is known to form reactive oxygen species. Thus, the objective of this study was to investigate whether CBR1 transcription might be increased during liver I/R injury and whether such increase might protect liver against I/R injury. Our results revealed that transcription factor Nrf2 could induce CBR1 transcription in liver of mice during I/R. Pre-treatment with sulforaphane, an activator of Nrf2, increased CBR1 expression, decreased liver enzymes such as aspartate aminotransferase and alanine transaminase, and reduced I/R-related pathological changes. Using oxygen-glucose deprivation and recovery model of human normal liver cell line, it was found that oxidative stress markers and lipid peroxidation products were significantly lowered in cells overexpressing CBR1. Conversely, CBR1 knockdown cells expressed elevated levels of oxidative stress proteins compared to the parental cell line. We also observed that Nrf2 and CBR1 were overexpressed during liver transplantation in clinical samples. These results suggest that CBR1 expression during liver I/R injury is regulated by transcription factor Nrf2. In addition, CBR1 can reduce free radicals and prevent lipid peroxidation. Taken together, CBR1 induction might be a therapeutic strategy for relieving liver I/R injury during liver transplantation.

Clinical Experiences of High-Risk Pulmonary Thromboembolism Receiving Extracorporeal Membrane Oxygenation in Single Institution

  • Jang, Joonyong;Koo, So-My;Kim, Ki-Up;Kim, Yang-Ki;Uh, Soo-Taek;Jang, Gae-Eil;Chang, Wonho;Lee, Bo Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.3
    • /
    • pp.249-255
    • /
    • 2022
  • Background: The main cause of death in pulmonary embolism (PE) is right-heart failure due to acute pressure overload. In this sense, extracorporeal membrane oxygenation (ECMO) might be useful in maintaining hemodynamic stability and improving organ perfusion. Some previous studies have reported ECMO as a bridge to reperfusion therapy of PE. However, little is known about the patients that benefit from ECMO. Methods: Patients who underwent ECMO due to pulmonary thromboembolism at a single university-affiliated hospital between January 2010 and December 2018 were retrospectively reviewed. Results: During the study period, nine patients received ECMO in high-risk PE. The median age of the patients was 60 years (range, 22-76 years), and six (66.7%) were male. All nine patients had cardiac arrests, of which three occurred outside the hospital. All the patients received mechanical support with veno-arterial ECMO, and the median ECMO duration was 1.1 days (range, 0.2-14.0 days). ECMO with anticoagulation alone was performed in six (66.7%), and ECMO with reperfusion therapy was done in three (33.3%). The 30-day mortality rate was 77.8%. The median time taken from the first cardiac arrest to initiation of ECMO was 31 minutes (range, 30-32 minutes) in survivors (n=2) and 65 minutes (range, 33-482 minutes) in non-survivors (n=7). Conclusion: High-risk PE with cardiac arrest has a high mortality rate despite aggressive management with ECMO and reperfusion therapy. Early decision to start ECMO and its rapid initiation might help save those with cardiac arrest in high-risk PE.

Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury due to inhibition of NOX2-mediated calcium homeostasis dysregulation in mice

  • Han, Yuli;Li, Xuewang;Yang, Liu;Zhang, Duoduo;Li, Lan;Dong, Xianan;Li, Yan;Qun, Sen;Li, Weizu
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.515-525
    • /
    • 2022
  • Background: The incidence of ischemic cerebrovascular disease is increasing in recent years and has been one of the leading causes of neurological dysfunction and death. Ginsenoside Rg1 has been found to protect against neuronal damage in many neurodegenerative diseases. However, the effect and mechanism by which Rg1 protects against cerebral ischemia-reperfusion injury (CIRI) are not fully understood. Here, we report the neuroprotective effects of Rg1 treatment on CIRI and its possible mechanisms in mice. Methods: A bilateral common carotid artery ligation was used to establish a chronic CIRI model in mice. HT22 cells were treated with Rg1 after OGD/R to study its effect on [Ca2+]i. The open-field test and poleclimbing experiment were used to detect behavioral injury. The laser speckle blood flowmeter was used to measure brain blood flow. The Nissl and H&E staining were used to examine the neuronal damage. The Western blotting was used to examine MAP2, PSD95, Tau, p-Tau, NOX2, PLC, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging was used to test the level of [Ca2+]i. Results: Rg1 treatment significantly improved cerebral blood flow, locomotion, and limb coordination, reduced ROS production, increased MAP2 and PSD95 expression, and decreased p-Tau, NOX2, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging results showed that Rg1 could inhibit calcium overload and resist the imbalance of calcium homeostasis after OGD/R in HT22 cells. Conclusion: Rg1 plays a neuroprotective role in attenuating CIRI by inhibiting oxidative stress, calcium overload, and neuroinflammation.

Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury

  • Yu, Yingli;Wang, Min;Chen, Rongchang;Sun, Xiao;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.642-653
    • /
    • 2021
  • Background: Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17einduced cardioprotection are also explored. Methods: Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results: We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion: GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.

Cardioprotection via mitochondrial transplantation supports fatty acid metabolism in ischemia-reperfusion injured rat heart

  • Jehee Jang;Ki-Woon Kang;Young-Won Kim;Seohyun Jeong;Jaeyoon Park;Jihoon Park;Jisung Moon;Junghyun Jang;Seohyeon Kim;Sunghun Kim;Sungjoo Cho;Yurim Lee;Hyoung Kyu Kim;Jin Han;Eun-A Ko;Sung-Cherl Jung;Jung-Ha Kim;Jae-Hong Ko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.209-217
    • /
    • 2024
  • In addition to cellular damage, ischemia-reperfusion (IR) injury induces substantial damage to the mitochondria and endoplasmic reticulum. In this study, we sought to determine whether impaired mitochondrial function owing to IR could be restored by transplanting mitochondria into the heart under ex vivo IR states. Additionally, we aimed to provide preliminary results to inform therapeutic options for ischemic heart disease (IHD). Healthy mitochondria isolated from autologous gluteus maximus muscle were transplanted into the hearts of Sprague-Dawley rats damaged by IR using the Langendorff system, and the heart rate and oxygen consumption capacity of the mitochondria were measured to confirm whether heart function was restored. In addition, relative expression levels were measured to identify the genes related to IR injury. Mitochondrial oxygen consumption capacity was found to be lower in the IR group than in the group that underwent mitochondrial transplantation after IR injury (p < 0.05), and the control group showed a tendency toward increased oxygen consumption capacity compared with the IR group. Among the genes related to fatty acid metabolism, Cpt1b (p < 0.05) and Fads1 (p < 0.01) showed significant expression in the following order: IR group, IR + transplantation group, and control group. These results suggest that mitochondrial transplantation protects the heart from IR damage and may be feasible as a therapeutic option for IHD.

Unusual Cause of Cognitive Impairment after a Traffic Accident (교통사고 후 발생한 드문 원인에 의한 인지 장애 1예)

  • Park, Chi-Min
    • Journal of Trauma and Injury
    • /
    • v.24 no.2
    • /
    • pp.151-154
    • /
    • 2011
  • In trauma patients, cognitive impairment may develop due to several causes: traumatic brain injury such as intracranial hemorrhage, diffuse axonal injury, hypoxic brain injury or reperfusion injury, the psychologic disorder, such as acute stress disorder, post-traumatic disorder or delirium. We describe a 62-year-old male with post-trauma cognitive impairment due to a primary central nervous system lymphoma.