• Title/Summary/Keyword: renewable energy island

Search Result 121, Processing Time 0.026 seconds

Introductions for Foreign PEM Systems and It's Field Test Plan Linked to Renewable Energy in Jeju Island (국외 PEM 수전해시스템 도입 및 제주도 재생에너지 연계 실증방안)

  • Sangyup Jang;Jaedong Kim;Dongmin Kim;Jinmo Park;Youngseuk So
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.33-37
    • /
    • 2023
  • Efforts by each country to solve the climate change problem continue, and the transition to eco-friendly fuels is a task for mankind to continue. Recently, Jeju Island, where renewable energy resources are relatively abundant, is preparing to demonstrate the technology to produce green hydrogen linked to renewable energy and this study aims to introduce and apply polymer electrolyte water electrolysis devices of advanced foreign companies after comparing domestic and foreign technologies. This study aims to solve domestic safety regulations for water electrolysis devices manufactured overseas and system introduction process and evaluation method of core components.

A Study on System Retrofit of Complex Energy System (복합에너지시스템의 성능개선에 관한 연구)

  • Choi, Jung-Hun;Moon, Chae-Joo;Chang, Young-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • The application of renewable energies such as wind and solar has become an inevitable choice for many countries in order to achieve the reduction of greenhouse gases and healthy economic development. However, due to the intermittent characteristics of renewable energy, the issue with integrating a larger proportion of renewable energy into the grid becomes more prominent. A complex energy system, usually consists of two or more renewable energy sources used together to provide increased system efficiency as well as greater balance in energy supply. Compared with the power system, control and optimization of the complex energy system become more difficult in terms of modeling, operation, and planning. The main purpose of the complex energy system retrofit for samado island with microgrid system is to coordinate the operation with various distributed energy resources, energy storage systems, and power grids to ensure its reliability, while reducing the operating costs and achieving the optimal economic benefits. This paper suggests the improved complex energy system of samado island with optimal microgrid system. The results of test operation show about 12% lower SOC variation band of ESS, elimination of operation limit in PV and reduction of operation time in diesel generator.

Economic and Environmental Feasibility on the Wind-Diesel Hybrid Power System in an Island near Seamangeum Area (새만금 부근 섬 지역에서 풍력-디젤 복합 전원 시스템의 경제 및 환경적 타당성에 관한 연구)

  • Seo, Hyun-Soo;Chang, Se-Myong;Kim, Eun-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.277-280
    • /
    • 2006
  • This paper deals with the possibility on the hybrid power system concerning wind energy at a really existing island, Sunyoo-do in the west sea near Seamangeum. In the present stage, Diesel system produces all the electrical power of the Island. However, in the new proposed system of Diesel and wind energy, an optimized guideline for drive from the economic analysis on this hybrid system is given by a mathematical and statistical modelling with a share software HOMER (hybrid optimization model for electric renewables). After a series of analysis it has been shown that the hybrid system can reduce the total expenses as well as air pollution.

  • PDF

Design and Implementation of Stand-alone Microgrid Monitoring System for Green Energy Independence Island (그린에너지 자립섬을 위한 계통 독립형 마이크로그리드 모니터링 시스템 설계 및 구현)

  • Song, Hwa-Jung;Park, Kyoung-Wook;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.527-532
    • /
    • 2015
  • In domestic island regions, the power supply generally depends on diesel generators due to difficulties of grid connection. To solve this issue, recently, the study on the stand-alone microgrid technology and its test are being actively conducted. In this paper, we propose the stand-alone microgrid integration monitoring system for energy independence island. First, we design the software architecture for monitoring of solar, wind, diesel power generation facilities, transmission and distribution of grid network, and energy storage system. Then, we implement the monitoring software that allows administrators to identify and run the monitoring software easily.

A Strategy of Increasing the Wind Power Penetration Limit with VSC Type MMC-HVDC in Jeju Power System (전압형 MMC-HVDC에 의한 제주계통의 풍력한계용량 증대 방안)

  • Lee, Seungmin;Kim, Eel-Hwan;Kim, Ho-Min;Chae, Sang-Heon;Quach, Ngoc-Thinh
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.550-557
    • /
    • 2015
  • The Jeju Special Self-Governing Province is currently promoting the "Carbon-free Island by 2030" policy, which requires the use of renewable energy instead of fossil fuel so that the island will have no carbon gases generated by 2030. To implement this policy, the island plans to build a wind power plant capacity of 1.09 GW in 2020; this wind power plant is currently ongoing. However, when wind power output is greater than the power demand of the island, the stability of Jeju Island power system must be prepared for it because it can be a problem. Therefore, this study proposes a voltage source-type MMC-HVDC system linked to mainland Korea to expand the wind power penetration limits of Jeju Island under the stable operation of the Jeju Island power system. To verify the effectiveness of the proposed scheme, computer simulations using the PSCAD/EMTDC program are conducted, and the results are demonstrated. The scenarios of the computer simulation consist of two cases. First, the MMC-HVDC system is operated under variable wind power in the Jeju Island power system. Second, it is operated under the predicted Jeju Island power system in 2020.

Evaluation of Energy Production for a Small Wind Turbine Installed in an Island Area (도서지역 소형풍력발전기 에너지 발생량 평가)

  • Jang, Choon-Man;Lee, Jong-Sung;Jeon, Wan-Ho;Lim, Tae-Gyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.558-565
    • /
    • 2013
  • This paper presents how to determine AEP(Annual Energy Production) by a small wind turbine in DuckjeokDo island. Evaluation of AEP is introduced to make a self-contained island including renewable energy sources of wind, solar, and tidal energy. To determine the AEP in DuckjeokDo island, a local wind data is analyzed using the annual wind data from Korea Institute of Energy Research firstly. After the wind data is separated in 12-direction, a mean wind speed at each direction is determined. And then, a small wind turbine power curve is selected by introducing the capacity of a small wind turbine and the energy production of the wind turbine according to each wind direction. Finally, total annual wind energy production for each small wind turbine can be evaluated using the local wind density and local energy production considering a mechanical energy loss. Throughout the analytic study, it is found that the AEP of DuckjeokDo island is about 2.02MWh/y and 3.47MWh/y per a 1kW small wind turbine installed at the altitude of 10 m and 21m, respectively.

Voltage and Frequency Control Method Using Battery Energy Storage System for a Stand-alone Microgrid (배터리 에너지 저장장치를 이용한 독립형 마이크로그리드의 전압 및 주파수 제어)

  • Kim, Sang-Hyuk;Chung, Il-Yop;Lee, Hak-Joo;Chae, Woo-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1168-1179
    • /
    • 2015
  • This paper presents voltage and frequency control methods for a stand-alone Gasa Island Microgrid in South Korea that can be fully energized by renewable energy resources such as photovoltaic systems and wind turbines. To mitigate the variations of the output of renewable energy resources and supply more reliable electricity to customers, battery energy storage systems (BESSs) are employed in the stand-alone microgrid. The coordination between BESSs and pre-existing diesel generators is an important issue to manage the microgrid more securely. This paper presents voltage and frequency control schemes considering the coordination of BESSs and DGs. The effectiveness for the operating method is validated via simulation studies.

Measurement and Analysis of Wind Energy Potential in Kokunsando of Saemankeum (새만금 고군산군도의 풍자원 측정 및 분석)

  • Shim, Ae-Ri;Choi, Yeon-Sung;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.51-58
    • /
    • 2011
  • Saemankeum is well known for its high speed wind, and it is known that the blueprint of a future city around Saemankeum, including new industrial complex, has been planned. As a result, large-scale offshore wind farm, on the basis of the measurement of wind resource for a long time, can be considered, so that generated electricity can be used to meet the energy demand near the wind farm. Wind speed in Kokunsando of Saemankeum is measured and analyzed with its statistical distribution and wind directions. The probability of wind power resource over Kokunsando of Saemangeum is reviewed with the measured data in one island of Kokunsando. According to measured data, the shape and scale factor of Weibull distribution of wind speed are obtained, and then power density is analyzed as well. Through this study, it is clear that the Saemangeum area has a fluent and abundant wind power source to develop the wind farm in Korea.

Independent Generation System Design for the Economic Management of Electrical Charging Stations (전기충전소의 경제적 운영을 위한 독립발전 시스템 설계)

  • Seo, Jin-Gyu;Kim, Kyu-Ho;Rhee, Sang-Bong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.222-227
    • /
    • 2015
  • This paper presents the optimal energy generation systems for economical EVs(Electric Vehicles) charging stations located in an island area. The system includes grid electricity, diesel generator and renewable energy sources of wind turbines and PV(Photovoltaic) panels. The independent generation system is designed with data resources such as annual average wind speed, solar radiation and the grid electricity price by calculating system cost under different structures. This sensitive analysis on the varying data resources allows for the configuration of the most economical generation system for charging stations by comparing initial capital, operating cost, NPC(Net Present Cost) and COE(Cost of Energy). Depending on the increase of the grid cost, the NPC variation of the most economical system which includes renewable energy generations and grid electricity can be smaller than those of other generation systems.

Study on the Power Performance on WindPRO Prediction in the Southeast Region of Jeju Island (제주 남동부 지역을 대상으로 한 WindPRO의 발전량 예측에 관한 연구)

  • Hyun, Seunggun;Kim, Keonhoon;Huh, Jongchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.184.1-184.1
    • /
    • 2010
  • In order to research the way to evaluate wind resource without actual Met Mast data, this paper has been carried out on the southeastern region of Jeju island, Korea. Although wind turbine has been an economical alternative energy resource, misjudging the prediction of lifetime or payback period occurs because of the inaccurate assessment of wind resource and the location of wind turbine. Using WindPRO(Ver. 2.7), a software for wind farm design developed by EMD from Denmark, wind resources for the southeastern region of Jeju island was analyzed, and the performance of WindPRO prediction was evaluated in detail. Met Mast data in Su-san 5.5Km far from Samdal wind farm, AWS in Sung-san 4.5km far from Samdal wind farm, and Korea Wind Map data had been collected for this work.

  • PDF