• Title/Summary/Keyword: rendering

Search Result 1,801, Processing Time 0.025 seconds

Screen Content Coding Analysis to Improve Coding Efficiency for Immersive Video (몰입형 비디오 압축을 위한 스크린 콘텐츠 코딩 성능 분석)

  • Lee, Soonbin;Jeong, Jong-Beom;Kim, Inae;Lee, Sangsoon;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.911-921
    • /
    • 2020
  • Recently, MPEG-I (Immersive) has been exploring compression performance through standardization projects for immersive video. The MPEG Immersion Video (MIV) standard technology is intended to provide limited 6DoF based on depth map-based image rendering (DIBR). MIV is a model that processes the Basic View and the residual information into an Additional View, which is a collection of patches. Atlases have the unique characteristics depending on the kind of the view they are included, requiring consideration of the compression efficiency. In this paper, the performance comparison analysis of screen content coding tools such as intra block copy (IBC) is conducted, based on the pattern of various views and patches repetition. It is demonstrated that the proposed method improves coding performance around -15.74% BD-rate reduction in the MIV.

Dynamic Reconstruction Algorithm of 3D Volumetric Models (3D 볼류메트릭 모델의 동적 복원 알고리즘)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.207-215
    • /
    • 2022
  • The latest volumetric technology's high geometrical accuracy and realism ensure a high degree of correspondence between the real object and the captured 3D model. Nevertheless, since the 3D model obtained in this way constitutes a sequence as a completely independent 3D model between frames, the consistency of the model surface structure (geometry) is not guaranteed for every frame, and the density of vertices is very high. It can be seen that the interconnection node (Edge) becomes very complicated. 3D models created using this technology are inherently different from models created in movie or video game production pipelines and are not suitable for direct use in applications such as real-time rendering, animation and simulation, and compression. In contrast, our method achieves consistency in the quality of the volumetric 3D model sequence by linking re-meshing, which ensures high consistency of the 3D model surface structure between frames and the gradual deformation and texture transfer through correspondence and matching of non-rigid surfaces. And It maintains the consistency of volumetric 3D model sequence quality and provides post-processing automation.

Discussion on the Concept of Terminology in the Introduction of Virtual Studio (가상스튜디오 도입기의 용어 개념에 관한 논의)

  • Nah, So-Mi
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.91-98
    • /
    • 2022
  • Currently, new terms are overflowing with the development of technology from VR, AR, XR to Metaverse. Every time a term is generated in this way, society considers it a new technology and tends to use it enthusiastically, but there is confusion in correctly understanding and utilizing the category of the term. He would like to discuss the virtual studio that played an important role in the development of broadcasting CG (Computer Graphics) technology in the 1990s, and talk about the introduction of new terms in the past and how to use them. Therefore, this paper examines the gap between chaos and upright each time a term is generated based on the time when the virtual studio is introduced, and analyzes the utilization of new technology from the past through the introduction machine manufacturing case. By examining the past technological development processes expressed by remediation, this paper argues that the current situation is not a new technology but an expression of a new term, that is, a phenomenon that appears during the gradual development of technology. It is something to do.

Assessment of Physical Habitat and the Fish Community in Korea Stream

  • Hur, Jun Wook;Joo, Jin Chul;Choi, Byungwoong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • The purpose of this study is to provide essential data necessary to assess ecological flow requirements by understanding habitat conditions for fish species through monitoring an ecological environment in the Korea stream (Dal Stream) and building related database. On-site surveys were conducted for identifying ecological and habitat conditions at the four monitoring sites. Fish sampling was carried out at the selected four sites (St.) during the period ranging from September, 2008 to September, 2009. At the four sampling sites, we measured water surface elevation, depth and velocity at the cross-sections. Optimal Ecological Flowrates (OEFs) were estimated using the Habitat Suitability Index (HSI) established for four fish species Zacco koreanus (St.1), Pungtungia herzi (St.2), Coreoleuciscus splendidus (St.3), and Zacco platypus (St.4) selected as icon species using the Physical HABitat SIMulation system (PHABSIM). Eighteen species (56.3%) including Odontobutis interrupta, Coreoperca herzi and C. splendidus were found endemic out of the 32 species in eight families sampled during this study period. The endangered species was collected Acheilognathus signifier, Pseudopungtungia tenuicorpa and Gobiobotia macrocephala, and this relative abundance was 9.4%. The most frequently found one was Z. platypus (31.3%) followed by C. splendidus (17.6%) and Z. koreanus (15.7%). The estimated IBI values ranged from 27.3 to 34.3 with average being 30.3 out of 50, rendering the site ecologically poor to fair health conditions. For C. splendidus (St.3), the dominant fish species in the stream, the favored habitat conditions were estimated to be 0.3-0.5 m for water depth, 0.4-0.7 m/s for flow velocity and sand-cobbles for substrate size, respectively. An OEFs of 8.5 m3/s was recommended for the representative fish species at the St.3.

3D Clothes Modeling of Virtual Human for Metaverse (메타버스를 위한 가상 휴먼의 3차원 의상 모델링)

  • Kim, Hyun Woo;Kim, Dong Eon;Kim, Yujin;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.638-653
    • /
    • 2022
  • In this paper, we propose the new method of creating 3D virtual-human reflecting the pattern of clothes worn by the person in the high-resolution whole body front image and the body shape data about the person. To get the pattern of clothes, we proceed Instance Segmentation and clothes parsing using Cascade Mask R-CNN. After, we use Pix2Pix to blur the boundaries and estimate the background color and can get UV-Map of 3D clothes mesh proceeding UV-Map base warping. Also, we get the body shape data using SMPL-X and deform the original clothes and body mesh. With UV-Map of clothes and deformed clothes and body mesh, user finally can see the animation of 3D virtual-human reflecting user's appearance by rendering with the state-of-the game engine, i.e. Unreal Engine.

Micro-computed tomography for assessing the internal and external voids of bulk-fill composite restorations: A technical report

  • Tosco, Vincenzo;Monterubbianesi, Riccardo;Furlani, Michele;Giuliani, Alessandra;Putignano, Angelo;Orsini, Giovanna
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.303-308
    • /
    • 2022
  • Purpose: This technical report aims to describe and detail the use of micro-computed tomography for a reliable evaluation of the bulk-fill composite/tooth interface. Materials and Methods: Bulk-fill composite restorations in tooth cavities were scanned using micro-computed tomography to obtain qualitatively and quantitatively valuable information. Two-dimensional information was processed using specific algorithms, and ultimately a 3-dimensional (3D) specimen reconstruction was generated. The 3D rendering allowed the visualization of voids inside bulk-fill composite materials and provided quantitative measurements. The 3D analysis software VG Studio MAX was used to perform image analysis and assess gap formation within the tooth-restoration interface. In particular, to evaluate internal adaptation, the Defect Analysis addon module of VG Studio Max was used. Results: The data, obtained with the processing software, highlighted the presence and the shape of gaps in different colours, representing the volume of porosity within a chromatic scale in which each colour quantitatively represents a well-defined volume. Conclusion: Micro-computed tomography makes it possible to obtain several quantitative parameters, providing fundamental information on defect shape and complexity. However, this technique has the limit of not discriminating materials without radiopacity and with low or no filler content, such as dental adhesives, and hence, they are difficult to visualise through software reconstruction.

Sensory Evaluation of Friction and Viscosity Rendering with a Wearable 4 Degrees of Freedom Force Feedback Device Composed of Pneumatic Artificial Muscles and Magnetorheological Fluid Clutches

  • Okui, Manabu;Tanaka, Toshinari;Onozuka, Yuki;Nakamura, Taro
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 2021
  • With the progress in virtual reality technology, various virtual objects can be displayed using head-mounted displays (HMD). However, force feedback sensations such as pushing against a virtual object are not possible with an HMD only. Focusing on force feedback, desktop-type devices are generally used, but the user cannot move in a virtual space because such devices are fixed on a desk. With a wearable force feedback device, users can move around while experiencing force feedback. Therefore, the authors have developed a wearable force feedback device using a magnetorheological fluid clutch and pneumatic rubber artificial muscle, aiming at presenting the elasticity, friction, and viscosity of an object. To date, we have developed a wearable four-degree-of-freedom (4-DOF) force feedback device and have quantitatively evaluated that it can present commanded elastic, frictional, and viscous forces to the end effector. However, sensory evaluation with a human has not been performed. In this paper, therefore, we conduct a sensory evaluation of the proposed method. In the experiment, frictional and viscous forces are rendered in a virtual space using a 4-DOF force feedback device. Subjects are asked to answer questions on a 1- to 7-point scale, from 1 (not at all) to 4 (neither) to 7 (strongly). The Wilcoxon signed rank test was used for all data, and answer 4 (neither) was used as compared standard data. The experimental results confirmed that the user could feel the presence or absence of viscous and frictional forces. However, the magnitude of those forces was not sensed correctly.

Effective problem mitigation strategy of lithium secondary battery silicon anode utilized liquid precursor (에틸벤젠을 이용한 실리콘 산화물 음극재의 효과적인 카본 코팅 전략)

  • Sangryeol Lee;Seongsu Park;Sujong Chae
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.1
    • /
    • pp.62-68
    • /
    • 2023
  • Silicon (Si) is considered as a promising substitute for the conventional graphite due to its high theoretical specific capacity (3579 mAh/g, Li15Si4) and proper working voltage (~0.3V vs Li+/Li). However, the large volume change of Si during (de)lithiation brings about severe degradation of battery performances, rendering it difficult to be applied in the practical battery directly. As a one feasible candidate of industrial Si anode, silicon monoxide (SiOx) demonstrates great electrochemical stability with its specialized strategy, downsized Si nanocrystallites surrounded by Li+ inactive buffer phase (Li2O and Li4SiO4). Nevertheless, SiOx inherently has the initial irreversible capacity and poor electrical conductivity. To overcome those issues, conformal carbon coating has been performed on SiOx utilizing ethylbenzene as the carbon precursor of chemical vapor deposition (CVD). Through various characterizations, it is confirmed that the carbon is homogeneously coated on the surface of SiOx. Accordingly, the carbon-coated SiOx from CVD using ethylbenzene demonstrates 73% of the first cycle efficiency and great cycle life (88.1% capacity retention at 50th cycle). This work provides a promising synthetic route of the uniform and scalable carbon coating on Si anode for high-energy density.

Factors Influencing the Intention to Participate in Digital Cultural Tourism on the Metaverse Platform (메타버스 플랫폼에서의 문화관광 활동 참여 의도에 영향을 미치는 요인에 관한 연구)

  • Jiaping Zang;Eunjin Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.341-359
    • /
    • 2023
  • The metaverse applies various technological means such as digital twin modeling, 3D rendering, and holographic imaging, which can provide an immersive tourism service experience. However, since the development of the metaverse is still in its infancy, there is relatively little research on digital tourism from the perspective of the metaverse. This research empirically studies the factors that promote the participation behavior of users on the metaverse platform for digital cultural tourism. Our results show that users' internal motivations for learning and entertainment and the functions provided by metaverse, which are sensory stimulation and social interaction lead to the intention to participate in cultural tourism on metaverse with the mediating effects of immersion experience and perceived pleasure.

Material Diagnosis of Metalbased Pigments in Paintings Using Terahertz Imaging (테라헤르츠 이미징을 이용한 금속 성분 회화 재료 진단 연구)

  • Baek Nayeon;Lee Hanhyoung;Song Youna
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.111-132
    • /
    • 2023
  • Terahertz radiation cannot pass through metal and therefore reflect and return most signals. Utilizing this property, this study analyzed information on paintings to verify the usage of metal materials on paintings and the scope of their application. First, the study tested specimens of metal-based pigments and synthetic pearl pigments with metallic colors and textures in order to compare basic characteristics of terahertz images, such as signal severance caused by metallic substances, traits reflected in cross-section images, and high degree of reflection. Subsequently, based on the collected information, the study diagnosed various types of paintings including Korean traditional paintings and oil paintings using the terahertz imaging technique to confirm the usage of metal-based pigments in the inner layers of paintings and their scope of application. The terahertz imaging technique could has the potential to provide scientific evidence for previously-undiscovered information and art-historical records about various types of paintings that used metalbased pigments, thereby rendering significant utility for the conservation and authentication of paintings.