• Title/Summary/Keyword: renal epithelial cells

Search Result 114, Processing Time 0.027 seconds

Methanol Extract of Goat's-beard (Aruncus dioicus) Reduces Renal Injury by Inhibiting Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Baek, Hae-Sook;Lim, Sun-Ha;Ahn, Ki-Sung;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • Interruption or prolonged reduction and subsequent restoration of blood flow into the kidney triggers the generation of a burst of reactive oxygen species (ROS), leading to injury in the tubular epithelial cells. In this study, we determined whether methanol extract of goat's-beard (Aruncus dioicus) (extract) could prevent this ischemia/reperfusion injury. When in vitro radical scavenging activity of the extract was measured using a DPPH radical quenching assay, the extract displayed slightly lower activity than ascorbic acid. One hour after administration of the extract (400 mg/kg) by intraperitoneal injection in rats, renal ischemia/reperfusion injury was generated by clamping the left renal artery for forty minutes, followed by 24 hr restoration of blood circulation. Prior to clamping the left renal artery, the right renal artery was removed. Compared with the vehicle-treated group, pretreatment with the extract significantly reduced the tubular epithelial cell injury by 37% in the outer medulla region, and consequently reduced serum creatinine concentration by 39%. Reduction in the cell injury was mediated by attenuation of Bax/Bcl-2 ratio, inhibition of caspase-3 activation from procaspase-3, and subsequent reduction in the number of apoptotic cells. Thus, goat's-beard (Aruncus dioicus) might be developed as a prophylactic agent to prevent acute kidney injury.

Construction of Glomerular Epithelial Cells Expressing Both Immune Tolerance and GFP Genes and Application to Cell Therapy by Cell Transplantation

  • Ohga, Masahiro;Ogura, Mariko;Matsumura, Mastoshi;Wang, Pi-Chao
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.303-310
    • /
    • 2002
  • Cell therapy applied to wound healing or tissue regeneration presents a revolutionary realm to which principles of gene engineering and delivery may be applied. One promising application is the transplantation of cells into the wounded tissue to help the tissue repair. However, when cells are transplanted from in vitro to in vivo, immune rejection occurs due to the immune response triggered by the activation of T-cell, and the transplanted cells are destroyed by the attack of activated T-cell and lose their function. Immune suppressant such as FK506 is commonly used to suppress immune rejection during transplantation. However, such kind of immune suppressants not only suppresses immune rejection in the periphery of transplanted cells but also suppresses whole immune response system against pathogenic infection. In order to solve this problem, we developed a method to protect the desired cells from immune rejection without impairing whole immune system during cell transplantation. Previously, we reported the success of constructing glomerular epithelial cells for removal of immune complex, in which complement receptor of type 1 (CR1) was over-expressed on the membrane of renal glomerular epithelial cells and could bind immune complex of DNA/anti-DNA-antibody to remove immune complex through phagocy-tosis [1]. Attempting to apply the CR1-expressing cells to cell therapy and evade immune rejection during cell transplantation, we constructed three plasmids containing genes encoding a soluble fusion protein of cytolytic T lymphocyte associated antigen-4 (CTLA4Ig) and an enhanced green fluorescent protein (EGFP). The plasmids were transfected to the above-mentioned glomerular epithelial cells to express both genes simultaneously. Using the clone cells for cell transplantation showed that mice with autoimmune disease prolonged their life significantly as compared with the control mice, and two injections of the cells at the beginning of two weeks resulted in remarkable survivability, whereas it requires half a year and 50 administrations of proteins purified from the same amount of cells to achieve the same effect.

The Gene Expression Profile of Cyst Epithelial Cells in Autosomal Dominant Polycystic Kidney Disease Patients

  • Lee, Jae-Eun;Park, Min-Ha;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.612-617
    • /
    • 2004
  • Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by the formation of fluid-filled cysts in the kidney and progressive renal failure. Other manifestations of ADPKD include the formation of cysts in other organs (liver, pancreas, and spleen), hypertension, cardiac defects, and cerebral aneurysms. The loss of function of the polycystin -1 and -2 results in the formation of epithelium-lined cysts, a process that depends on initial epithelial proliferation. cDNA microarrays powerfully monitor gene expression and have led to the discoveries of pathways regulating complex biological processes. We undertook to profile the gene expression patterns of epithelial cells derived from the cysts of ADPKD patients using the cDNA microarray technique. Candidate genes that were differently expressed in cyst tissues were identified. 19 genes were up-regulated, and 6 down-regulated. Semi-quantitative RT-PCR results were consistent with the microarray findings. To distinguish between normal and epithelial cells, we used the hierarchical method. The results obtained may provide a molecular basis for understanding the biological meaning of cytogenesis.

Effect of WHW, a polyherbal medicine for the treatment of chronic renal failure on staurosporin-induced apotosis in MDCK cells (만성신부전 한약제제 WHW의 신장세포에서의 Staurosporine 유도 세포사멸에 대한 억제 효과)

  • Bae, Hyo-Sang;Yoon, Cheol-Ho;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.27 no.4
    • /
    • pp.45-51
    • /
    • 2012
  • Objectives : WHW is a polyherbal medicine for the treatment of chronic renal failure (CRF). WHW previously reported various biological property such as anti-inflammation, anti-oxidation and anti-renal fibrosis in CRF. This study aimed to investigate the anti-apoptotic effect of WHW on staurosporin(SSP)-induced apoptosis in canine kidney epithelial cells (MDCK). Methods : MDCK cells were treated with different concentrations of WHW (0.1, 0.2, 0.5 and $1mg/m{\ell}$) for 1 h, and then induced apoptosis by treatment of SSP ($1{\mu}M$) for 24 h. Cell viability was measured by WST-1 assay. The expression of apoptotic proteins such as caspase-3, Bax and Bcl-2 was determined by Western blot. Caspase-3 activity and ROS levels were also measured by their commercial available assay kits. Cell apoptosis was observed by Hoechst and DNA fragmentation. Results : WHW significantly increased the cell viability on SSP-treated MDCK cells. WHW inhibited SSP-induced expression of apoptotic proteins such as caspase-3 and Bax, and significantly decreased caspase-3 activity in MDCK cells. WHW significantly decreased SSP-induced production of ROS, and suppressed SSP-induced chromatin condensation and DNA fragmentation in MDCK cells. Conclusions : These results suggest that WHW has an anti-apoptotic effect in renal cells through suppressing the expression of apoptotic proteins, ROS production and DNA damages.

Effect of angiotensin II inhibition on the epithelial to mesenchymal transition in developing rat kidney (발생 중인 백서 신장에서 Angiotensin II 억제가 epithelial to mesenchymal transition에 미치는 효과)

  • Yim, Hyung-Eun;Yoo, Kee-Hwan;Bae, In-Sun;Hong, Young-Sook;Lee, Joo-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.8
    • /
    • pp.944-952
    • /
    • 2009
  • Purpose : To investigate the effects of angiotensin II inhibition on the epithelial to mesenchymal transition (EMT) in the developing kidney, we tested the expression of EMT markers and nestin in angiotensin converting enzyme (ACE) inhibitor-treated kidneys. Methods : Newborn rat pups were treated with enalapril (30 mg/kg/d) or a vehicle for 7 days. Immunohistochemistry for the expression of ${\alpha}$-smooth muscle actin (SMA), E-cadherin, vimentin, and nestin were performed. The number of positively-stained cells was determined under 100 magnification in 10 random fields. Results : In the enalapril-treated group, ${\alpha}SMA-positive$ cells were strongly expressed in the dilated tubular epithelial cells. The number of ${\alpha}SMA-positive$ cells in the enalapril-treated group increased in both the renal cortex and medulla, compared to the control group (P<0.05). The expression of E-cadherin-positive cells was dramatically reduced in the cortical and medullary tubular epithelial cells in the enalapril-treated group (P<0.05). The number of vimentin- and nestin-positive cells in the cortex was not different in comparisons between the two groups; however, their expression increased in the medullary tubulointerstitial cells in the enalapril-treated group (P<0.05). Conclusion : Our results show that ACE inhibition in the developing kidney increases the renal EMT by up-regulating ${\alpha}SMA$ and down-regulating E-cadherin. Enalapril treatment was associated with increased expression of vimentin and nestin in the renal medulla, suggesting that renal medullary changes during the EMT might be more prominent, and ACE inhibition might differentially modulate the expression of EMT markers in the developing rat kidney.

Effects of long-term tubular HIF-2α overexpression on progressive renal fibrosis in a chronic kidney disease model

  • Dal-Ah Kim;Mi-Ran Lee;Hyung Jung Oh;Myong Kim;Kyoung Hye Kong
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.196-201
    • /
    • 2023
  • Renal fibrosis is the final manifestation of chronic kidney disease (CKD) regardless of etiology. Hypoxia-inducible factor-2 alpha (HIF-2α) is an important regulator of chronic hypoxia, and the late-stage renal tubular HIF-2α activation exerts protective effects against renal fibrosis. However, its specific role in progressive renal fibrosis remains unclear. Here, we investigated the effects of the long-term tubular activation of HIF-2α on renal function and fibrosis, using in vivo and in vitro models of renal fibrosis. Progressive renal fibrosis was induced in renal tubular epithelial cells (TECs) of tetracycline-controlled HIF-2α transgenic (Tg) mice and wild-type (WT) controls through a 6-week adenine diet. Tg mice were maintained on doxycycline (DOX) for the diet period to induce Tg HIF-2α expression. Primary TECs isolated from Tg mice were treated with DOX (5 ㎍/ml), transforming growth factor-β1 (TGF-β1) (10 ng/ml), and a combination of both for 24, 48, and 72 hr. Blood was collected to analyze creatinine (Cr) and blood urea nitrogen (BUN) levels. Pathological changes in the kidney tissues were observed using hematoxylin and eosin, Masson's trichrome, and Sirius Red staining. Meanwhile, the expression of fibronectin, E-cadherin and α-smooth muscle actin (α-SMA) and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was observed using western blotting. Our data showed that serum Cr and BUN levels were significantly lower in Tg mice than in WT mice following the adenine diet. Moreover, the protein levels of fibronectin and E-cadherin and the phosphorylation of p38 MAPK were markedly reduced in the kidneys of adenine-fed Tg mice. These results were accompanied by attenuated fibrosis in Tg mice following adenine administration. Consistent with these findings, HIF-2α overexpression significantly decreased the expression of fibronectin in TECs, whereas an increase in α-SMA protein levels was observed after TGF-β1 stimulation for 72 hr. Taken together, these results indicate that long-term HIF-2α activation in CKD may inhibit the progression of renal fibrosis and improve renal function, suggesting that long-term renal HIF-2α activation may be used as a novel therapeutic strategy for the treatment of CKD.

Protective Effect of Water Extract of Fraxinus Rhynchophylla Leaves on Acetaminophen-induced Nephrotoxicity in Mice and Its Phenolic Compounds

  • Jeon, Jeong-Ryae;Choi, Joon-Hyuk
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.988-993
    • /
    • 2007
  • The protective effect of the water extract of Fraxinus rhynchophylla leaves (FLE) was determined using an animal model of acetaminophen (AAP)-induced nephrotoxicity. The BALB/c male mice used in this study were divided into 3 groups; the normal, AAP-administered, and FLE-pretreated AAP groups. A single dose of AAP induced necrosis of renal tubules and congestion along with edema to a remarkable degree as observed by hematoxylin and eosin stain, and also increased the numbers of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive renal tubular epithelial cells. Blood urea nitrogen and plasma creatinine levels were determined to be significantly higher in the AAP group than in the normal group. However, FLE pretreatment resulted in an attenuation of renal tubule necrosis. Regeneration and dilatation of renal tubules were noted, and the numbers of TUNEL-positive cells were reduced in the FLE-pretreated groups. In an effort to detect the bioactive compounds exerting protective effects in FLE, the analysis of phenolic compounds via gas chromatography/mass spectrometry (GC/MS) were performed, and identified esculetin and esculin. The present study indicates that these compounds may exert a protective effect against AAP-induced nephrotoxicity.

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • v.34 no.1
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Autosomal Dominant Polycystic Kidney Desease Coexisting with Renal Dysplasia. First Case Described and Followed Since Prenatal Period

  • Truyols, Carmen
    • Childhood Kidney Diseases
    • /
    • v.22 no.2
    • /
    • pp.64-66
    • /
    • 2018
  • Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent hereditary renal disease and causes terminal chronic renal failure. ADPKD is characterized by bilateral multiple renal cysts, which are produced by mutations of the PKD1 and PKD2 genes. PKD1 is located on chromosome 16 and encodes a protein that is involved in cell cycle regulation and intracellular calcium transport in epithelial cells and is responsible for 85% of ADPKD cases. Although nine cases of unilateral ADPKD with contralateral kidney agenesis have been reported, there have been no reports of early childhood ADPKD. Here, we report the only case of unilateral ADPKD with contralateral kidney dysplasia in the world in a four year-old girl who was intrauterinely diagnosed since she was 20 weeks old and followed for four years until present.

Mesenchymal Stem Cells Ameliorate Fibrosis by Enhancing Autophagy via Inhibiting Galectin-3/Akt/mTOR Pathway and by Alleviating the EMT via Inhibiting Galectin-3/Akt/GSK3β/Snail Pathway in NRK-52E Fibrosis

  • Yu Zhao;Chuan Guo;Lianlin Zeng;Jialing Li;Xia Liu;Yiwei Wang;Kun Zhao;Bo Chen
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.52-65
    • /
    • 2023
  • Background and Objectives: Epithelial-Mesenchymal transition (EMT) is one of the origins of myofibroblasts in renal interstitial fibrosis. Mesenchymal stem cells (MSCs) alleviating EMT has been proved, but the concrete mechanism is unclear. To explore the mechanism, serum-free MSCs conditioned medium (SF-MSCs-CM) was used to treat rat renal tubular epithelial cells (NRK-52E) fibrosis induced by transforming growth factor-β1 (TGF-β1) which ameliorated EMT. Methods and Results: Galectin-3 knockdown (Gal-3 KD) and overexpression (Gal-3 OE) lentiviral vectors were established and transfected into NRK-52E. NRK-52E fibrosis model was induced by TGF-β1 and treated with the SF-MSCs-CM for 24 h after modelling. Fibrosis and autophagy related indexes were detected by western blot and immunocytochemistry. In model group, the expressions of α-smooth muscle actin (α-SMA), fibronectin (FN), Galectin-3, Snail, Kim-1, and the ratios of P-Akt/Akt, P-GSK3β/GSK3β, P-PI3K/PI3K, P-mTOR/mTOR, TIMP1/MMP9, and LC3B-II/I were obviously increased, and E-Cadherin (E-cad) and P62 decreased significantly compared with control group. SF-MSCs-CM showed an opposite trend after treatment compared with model group. Whether in Gal-3 KD or Gal-3 OE NRK-52E cells, SF-MSCs-CM also showed similar trends. However, the effects of anti-fibrosis and enhanced autophagy in Gal-3 KD cells were more obvious than those in Gal-3 OE cells. Conclusions: SF-MSCs-CM probably alleviated the EMT via inhibiting Galectin-3/Akt/GSK3β/Snail pathway. Meanwhile, Gal-3 KD possibly enhanced autophagy via inhibiting Galectin-3/Akt/mTOR pathway, which synergistically ameliorated renal fibrosis. Targeting galectin-3 may be a potential target for the treatment of renal fibrosis.