DOI QR코드

DOI QR Code

Effect of angiotensin II inhibition on the epithelial to mesenchymal transition in developing rat kidney

발생 중인 백서 신장에서 Angiotensin II 억제가 epithelial to mesenchymal transition에 미치는 효과

  • Yim, Hyung-Eun (Department of Pediatrics, College of Medicine, Korea University) ;
  • Yoo, Kee-Hwan (Department of Pediatrics, College of Medicine, Korea University) ;
  • Bae, In-Sun (Department of Pediatrics, College of Medicine, Korea University) ;
  • Hong, Young-Sook (Department of Pediatrics, College of Medicine, Korea University) ;
  • Lee, Joo-Won (Department of Pediatrics, College of Medicine, Korea University)
  • 임형은 (고려대학교 의과대학 소아과학교실) ;
  • 유기환 (고려대학교 의과대학 소아과학교실) ;
  • 배인순 (고려대학교 의과대학 소아과학교실) ;
  • 홍영숙 (고려대학교 의과대학 소아과학교실) ;
  • 이주원 (고려대학교 의과대학 소아과학교실)
  • Received : 2009.05.20
  • Accepted : 2009.07.13
  • Published : 2009.08.15

Abstract

Purpose : To investigate the effects of angiotensin II inhibition on the epithelial to mesenchymal transition (EMT) in the developing kidney, we tested the expression of EMT markers and nestin in angiotensin converting enzyme (ACE) inhibitor-treated kidneys. Methods : Newborn rat pups were treated with enalapril (30 mg/kg/d) or a vehicle for 7 days. Immunohistochemistry for the expression of ${\alpha}$-smooth muscle actin (SMA), E-cadherin, vimentin, and nestin were performed. The number of positively-stained cells was determined under 100 magnification in 10 random fields. Results : In the enalapril-treated group, ${\alpha}SMA-positive$ cells were strongly expressed in the dilated tubular epithelial cells. The number of ${\alpha}SMA-positive$ cells in the enalapril-treated group increased in both the renal cortex and medulla, compared to the control group (P<0.05). The expression of E-cadherin-positive cells was dramatically reduced in the cortical and medullary tubular epithelial cells in the enalapril-treated group (P<0.05). The number of vimentin- and nestin-positive cells in the cortex was not different in comparisons between the two groups; however, their expression increased in the medullary tubulointerstitial cells in the enalapril-treated group (P<0.05). Conclusion : Our results show that ACE inhibition in the developing kidney increases the renal EMT by up-regulating ${\alpha}SMA$ and down-regulating E-cadherin. Enalapril treatment was associated with increased expression of vimentin and nestin in the renal medulla, suggesting that renal medullary changes during the EMT might be more prominent, and ACE inhibition might differentially modulate the expression of EMT markers in the developing rat kidney.

목 적 : Epithelial to mesenchymal transition (EMT)은 태생기에 있어 필수 불가결한 발달과정일 뿐 아니라, 신 섬유화에 있어서도 중요한 역할을 하며, nestin은 고전적인 줄기세포 표지자로 신 세뇨관 간질 손상에 있어 새로운 표지자로 밝혀지고 있다. 신생 백서 신장에서 Angiotensin (Ang) II가 EMT에 미치는 영향을 알아보고자, 안지오텐신 전환 효소 억제제를 투여한 신생 백서의 신장에서 EMT 표지자 및 nestin의 발현 양상을 조사하였다. 방 법 : 7일 동안 신생 백서에게 enalapril (30 mg/kg/d) 또는 vehicle을 투여하였으며, ${\alpha}-smooth$ muscle actin (SMA), E-cadherin, vimentin 및 nestin에 대한 면역 조직 화학 염색을 시행하였다. 결 과 : enalapril 투여군에서 대조군에 비해 신 피질 및 수질 모두에서 ${\alpha}-SMA$ 발현이 증가하였으며, 이는 확장된 세뇨관 상피 세포에서 뚜렷하였다(P<0.05). E-cadherin 발현은 enalapril 투여군의 신 피질 및 수질의 세뇨관 상피 세포에서 확연히 감소하였다(P<0.05). vimentin 및 nestin 발현은 신 피질에서는 양군간의 차이가 없었으나, 신 수질에서는 enalapril 투여군에서 세뇨관 간질 세포에서 발현이 의미있게 증가하였다(P<0.05). 결 론 : 신생 백서 신장에서 Ang II 억제는 ${\alpha}-SMA$ 발현을 증가시키고, E-cadherin 발현을 감소시킴으로써 발달하는 신장의 EMT를 증가시켰다. Enalapril 투여는 또한 신 수질에서 vimentin과 nestin의 발현을 증가시켰으며, 이는 신생 백서 신장에서의 Ang II 억제로 인한 EMT 과정 중 신 수질의 변화가 더욱 뚜렷한 것을 시사하며, Ang II 억제가 EMT 표지자들의 발현을 다르게 변화시키는 것으로 사료된다.

Keywords

Acknowledgement

Supported by : Korean Pediatric Society (Wyeth Korea, Inc.)

References

  1. Chaffer CL, Thompson EW, Williams ED. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 2007;185:7-19 https://doi.org/10.1159/000101298
  2. Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 2008;19:294-308 https://doi.org/10.1016/j.semcdb.2008.02.001
  3. Zeisberg M, Shah AA, Kalluri R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem 2005;280:8094-100 https://doi.org/10.1074/jbc.M413102200
  4. Burns WC, Kantharidis P, Thomas MC. The role of tubular epithelial-mesenchymal transition in progressive kidney disease. Cells Tissues Organs 2007;185:222-31 https://doi.org/10.1159/000101323
  5. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003;9:964-8 https://doi.org/10.1038/nm888
  6. Ricardo SD, Deane JA. Adult stem cells in renal injury and repair. Nephrology 2005;10:276-82 https://doi.org/10.1111/j.1440-1797.2005.00373.x
  7. Strutz FM. EMT and proteinuria as progression factors. Kidney Int 2009;75:475-81 https://doi.org/10.1038/ki.2008.425
  8. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 2001;159:1465-75
  9. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002;110:341-50
  10. Chen J, Boyle S, Zhao M, Su W, Takahashi K, Davis L, et al. Differential expression of the intermediate filament protein nestin during renal development and its localization in adult podocytes. J Am Soc Nephrol 2006;17:1283-91 https://doi.org/10.1681/ASN.2005101032
  11. Bertelli E, Regoli M, Fonzi L, Occhini R, Mannucci S, Ermini L, et al. Nestin expression in adult and developing human kidney. J Histochem Cytochem 2007;55:411-21 https://doi.org/10.1369/jhc.6A7058.2007
  12. Zou J, Yaoita E, Watanabe Y, Yoshida Y, Nameta M, Li H, et al. Upregulation of nestin, vimentin, and desmin in rat podocytes in response to injury. Virchows Arch 2006;448: 485-92 https://doi.org/10.1007/s00428-005-0134-9
  13. Daniel C, Albrecht H, Lüdke A, Hugo C. Nestin expression in repopulating mesangial cells promotes their proliferation. Lab Invest 2008;88:387-97 https://doi.org/10.1038/labinvest.2008.5
  14. Bauer JH. Age-related changes in the renin-aldosterone system. Physiological effects and clinical implications. Drugs Aging 1993;3:238-45 https://doi.org/10.2165/00002512-199303030-00005
  15. Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H, Wickman A, et al. Renin-angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int 1994;45: 485-92 https://doi.org/10.1038/ki.1994.63
  16. Yoo KH, Wolstenholme JT, Chevalier RL. Angiotensin-converting enzyme inhibition decreases growth factor expression in the neonatal rat kidney. Pediatr Res 1997;42:588-92 https://doi.org/10.1203/00006450-199711000-00006
  17. Rasch R, Skriver E, Woods LL. The role of the RAS in programming of adult hypertension. Acta Physiol Scand 2004;181:537-42 https://doi.org/10.1111/j.1365-201X.2004.01328.x
  18. Yosypiv IV, El-Dahr SS. Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system. Pediatr Nephrol 2005;20:1219-29 https://doi.org/10.1007/s00467-005-1944-3
  19. Gomez RA, Lynch KR, Chevalier RL, Everett AD, Johns DW, Wilfong N, et al. Renin and angiotensinogen gene expression and intrarenal renin distribution during ACE inhibition. Am J Physiol 1988;254:900-6
  20. Ruiz-Ortega M, Esteban V, Rupérez M, Sánchez-López E, Rodríguez-Vita J, Carvajal G, et al. Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nephrol Hypertens 2006;15:159-66 https://doi.org/10.1097/01.mnh.0000203190.34643.d4
  21. Chen L, Liu BC, Zhang XL, Zhang JD, Liu H, Li MX. Influence of connective tissue growth factor antisense oligonucleotide on angiotensin II-induced epithelial mesenchymal transition in HK2 cells. Acta Pharmacol Sin 2006;27: 1029-36 https://doi.org/10.1111/j.1745-7254.2006.00344.x
  22. Bravo J, Quiroz Y, Pons H, Parra G, Herrera-Acosta J, Johnson RJ, et al. Vimentin and heat shock protein expression are induced in the kidney by angiotensin and by nitric oxide inhibition. Kidney Int Suppl 2003;86:S46-S51
  23. Johnson RJ, Alpers CE, Yoshimura A, Lombardi D, Pritzl P, Floege J, et al. Renal injury from angiotensin II-mediated hypertension. Hypertension 1992;19:464-74 https://doi.org/10.1161/01.HYP.19.5.464
  24. Lasaitiene D, Friberg P, Sundelin B, Chen Y. Neonatal RAS inhibition changes the phenotype of the developing thick ascending limb of Henle. Am J Physiol Renal Physiol 2004; 286:F1144-53 https://doi.org/10.1152/ajprenal.00236.2003
  25. Lasaitiene D, Chen Y, Mildaziene V, Nauciene Z, Sundelin B, Johansson BR, et al. Tubular mitochondrial alterations in neonatal rats subjected to RAS inhibition. Am J Physiol Renal Physiol 2006;290:F1260-9 https://doi.org/10.1152/ajprenal.00150.2005
  26. Lasaitiene D, Chen Y, Guron G, Marcussen N, Tarkowski A, Telemo E, et al. Perturbed medullary tubulogenesis in neonatal rat exposed to renin-angiotensin system inhibition. Nephrol Dial Transplant 2003;18:2534-41 https://doi.org/10.1093/ndt/gfg447
  27. Tang WW, Van GY, Qi M. Myofibroblast and alpha 1 (III) collagen expression in experimental tubulointerstitial nephritis. Kidney Int 1997;51:926-31 https://doi.org/10.1038/ki.1997.131
  28. Picard N, Baum O, Vogetseder A, Kaissling B, Le Hir M. Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem Cell Biol 2008;130: 141-55 https://doi.org/10.1007/s00418-008-0433-8
  29. Lan HY. Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Curr Opin Nephrol Hypertens 2003;12:25-9 https://doi.org/10.1097/00041552-200301000-00005
  30. Vanderburg CR, Hay ED. E-cadherin transforms embryonic corneal fibroblasts to stratified epithelium with desmosomes. Acta Anat 1996;157:87-104 https://doi.org/10.1159/000147870
  31. Bush KT, Tsukamoto T, Nigam SK. Selective degradation of E-cadherin and dissolution of E-cadherin-catenin complexes in epithelial ischemia. Am J Physiol Renal Physiol 2000;278:F847-52
  32. Omary MB, Coulombe PA, McLean WH. Intermediate filament proteins and their associated diseases. N Engl J Med 2004;351:2087-100 https://doi.org/10.1056/NEJMra040319
  33. Holthöfer H, Miettinen A, Lehto VP, Lehtonen E, Virtanen I. Expression of vimentin and cytokeratin types of intermediate filament proteins in developing and adult human kidneys. Lab Invest 1984;50:552-9
  34. Holthöfer H, Miettinen A, Lehto VP, Lehtonen E, Virtanen I. Expression of vimentin and cytokeratin types of intermediate filament proteins in developing and adult human kidneys. Lab Invest 1984;50:552-9
  35. Gonlusen G, Ergin M, Paydas S, Tunali N. The expression of cytoskeletal proteins (alpha-SMA, vimentin, desmin) in kidney tissue: a comparison of fetal, normal kidneys, and glomerulonephritis. Int Urol Nephrol 2001;33:299-305 https://doi.org/10.1023/A:1015226426000
  36. Witzgall R, Brown D, Schwarz C, Bonventre JV. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney: evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 1994;93:2175-88 https://doi.org/10.1172/JCI117214
  37. Sakairi T, Hiromura K, Yamashita S, Takeuchi S, Tomioka M, Ideura H, et al. Nestin expression in the kidney with an obstructed ureter. Kidney Int 2007;72:307-18 https://doi.org/10.1038/sj.ki.5002277

Cited by

  1. Angiotensin inhibition in the developing kidney; tubulointerstitial effect vol.85, pp.5, 2009, https://doi.org/10.1038/s41390-019-0288-9