• Title/Summary/Keyword: removing of Cr(VI)

Search Result 8, Processing Time 0.024 seconds

Adsorption Characteristics of Cr(VI) on the Oak Sawdust (참나무톱밥에 대한 6가크롬의 흡착특성)

  • Chung, Yongsoon;Lee, Kangwoo;Hwang, Jongyeon
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.254-259
    • /
    • 1998
  • The adsorption and reduction characteristics of chromium(VI) by oak sawdust were studied. The optimum adsorption condition is obtained from the measurement of the distribution coefficient($K_d$) and adsorption capacity of Cr(VI) on the sawdust by changing pH of the solution. As a result, it was found that pH 2.0 was optimum because $K_d$ of Cr(VI) was maximum and reducing quantity was minimum. By the use of these characteristics of the oak sawdust, the removing of Cr(VI) in industrial waste water was examined.

  • PDF

Cr(VI) Resistance and Removal by Indigenous Bacteria Isolated from Chromium-Contaminated Soil

  • Long, Dongyan;Tang, Xianjin;Cai, Kuan;Chen, Guangcun;Shen, Chaofeng;Shi, Jiyan;Chen, Linggui;Chen, Yingxu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1123-1132
    • /
    • 2013
  • The removal of toxic Cr(VI) by microorganisms is a promising approach for Cr(VI) pollution remediation. In the present study, four indigenous bacteria, named LY1, LY2, LY6, and LY7, were isolated from Cr(VI)-contaminated soil. Among the four Cr(VI)-resistant isolates, strain LY6 displayed the highest Cr(VI)-removing ability, with 100 mg/l Cr(VI) being completely removed within 144 h. It could effectively remove Cr(VI) over a wide pH range from 5.5 to 9.5, with the optimal pH of 8.5. The amount of Cr(VI) removed increased with initial Cr(VI) concentration. Data from the time-course analysis of Cr(VI) removal by strain LY6 followed first-order kinetics. Based on the 16S rRNA gene sequence, strain LY6 was identified as Pseudochrobactrum asaccharolyticum, a species that had never been reported for Cr(VI) removal before. Transmission electron microscopy and energy dispersive X-ray spectroscopy analysis further confirmed that strain LY6 could accumulate chromium within the cell while conducting Cr(VI) removal. The results suggested that the indigenous bacterial strain LY6 would be a new candidate for potential application in Cr(VI) pollution bioremediation.

Removal of Aqueous Cr(VI) using Magnetite Nanoparticles Synthesized from a Low Grade Iron Ore

  • Do, Thi May;Suh, Yong Jae
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.221-230
    • /
    • 2013
  • We demonstrated the efficacy of magnetic nanoparticles (MNPs) produced from a low grade iron ore as an adsorbent for the removal of Cr(VI), a toxic heavy metal anion present in wastewater. The adsorption of Cr(VI) by these MNPs strongly depended on the dosage of MNPs, the initial concentration of the Cr(VI) solutions, and pH. The highest Cr(VI) adsorption efficiency of 22.0 mg/g was observed at pH 2.5. The adsorption data were best fit with the Langmuir isotherm and corresponded to a pseudo-second-order kinetic model. The used adsorbent was regenerated by eluting in highly alkaline solutions. Sodium bicarbonate showed the highest desorption efficiency of 83.1% among various eluents including NaOH, $Na_2HPO_4$, and $Na_2CO_3$. Due to the high adsorption capacity, the simple magnetic separation, and the high desorption efficiency, this nano-adsorbent produced from inexpensive and abundant resources may attract the attention of the industries to apply for removing various metal anionic contaminants from wastewater.

Removal of Hexavalent Chromium by using Biomass (바이오매스를 이용한 6가 크롬의 제거)

  • Park, Donghee;Park, Jong Moon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.107-113
    • /
    • 2006
  • Not only Cr(VI) is very toxic, but also it is a major pollutant in soil and groundwater. Thus Cr(VI)-containing wastewater must be treated before being discharged into the environments. Recently, biosorption technology using abundant biomass has been considered as an innovative one for removing Cr(VI) from aqueous solution. In this review article, current research and future works on Cr(VI) biosorption were widely described. Particularly, the removal mechanism of Cr(VI) by biomass was described in detail, which has been misunderstood by many researchers until now.

Removal of hexavalent chromium Cr (VI) by adsorption in blended lateritic soil

  • Sunil, B.M.;Faziludeen, Saifiya
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.197-210
    • /
    • 2015
  • Hexavalent chromium [Cr (VI)] adsorption on lateritic soil and lateritic soil blended with black cotton (BC) soil, marine clay and bentonite clay were studied in the laboratory using batch adsorption techniques. In the present investigation the natural laterite soil was blended with 10%, 20% and 30% BC soil, marine clay and bentonite clay separately. The interactions on test soils have been studied with respect to the linear, Freundlich and Langmuir isotherms. The linear isotherm parameter, Freundlich and Langmuir isotherm parameters were determined from the batch adsorption tests. The adsorption of Cr (VI) on natural laterite soil and blended laterite soil was determined using double beam spectrophotometer. The distribution coefficients obtained were 1.251, 1.359 and 2.622 L/kg for lateritic soil blended with 10%, 20% and 30% BC soil; 5.396, 12.973 and 48.641 L/kg for lateritic soil blended with marine clay and 5.093, 8.148 and 12.179 L/kg for lateritic soil blended with bentonite clay respectively. The experimental data fitted well to the Langmuir model as observed from the higher value of correlation coefficient. Soil pH and iron content in soil(s) has greater influence on Cr (VI) adsorption. From the study it is concluded that laterite soil can be blended with clayey soils for removing Cr (VI) by adsorption.

Synthesis of Nanoscale Zerovalent Iron Particle and Its Application to Cr(VI) Removal from Aqueous Solutions

  • Awad, Yasser M.;Abdelhafez, Ahmed A.;Ahmad, Mahtab;Lee, Sang-Soo;Kim, Rog-Young;Sung, Jwa-Kyung;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.402-407
    • /
    • 2010
  • Zerovalent iron (ZVI) is one of the most commonly used metallic reducing agents for the treatment of toxic contaminants in wastewater. Traditional ZVIs are less effective than nanoscale ZVI (nZVI) due to prolonged reaction time. However, the reactivity can be significantly increased by reducing the size of ZVI particles to nanoscale. In this study, nZVI particles were synthesized under laboratory condition and their efficiency in removing hexavalent chromium (Cr(VI)) from aqueous solutions were compared with commercially available ZVI particles. The results showed that the synthesized nZVI particles (SnZVI) reduced >99% of Cr(VI) at the application rate of 0.2% (w/v), while commercial nZVI (CnZVI) particles resulted in 59.6% removal of Cr(VI) at the same application rate. Scanning electron micrographs (SEM) and energy dispersive spectra (EDS) of the nZVI particles revealed the formation of Fe-Cr hydroxide complex after reaction. Overall, the SnZVI particles can be used in treating chromium contaminated wastewater.

A Study on the Deposition of Chitosan for Enhancing the Adsorption Ability of Activated Carbon (활성탄의 흡착력 향상을 위한 키토산 첨착에 관한 연구)

  • Ju, Han-Shin;Kim, Byung-Hoon;Jung, Sang-Chul;Ra, Deog-Gwan;Chung, Min-Chul;Ahn, Ho-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.203-210
    • /
    • 2000
  • The preparative methods of a chitosan-deposited activated carbon and its characteristics were studied by using three kinds of chitosan with different degree of deacetylation and average molecular weight. The procedure was consisted of the dissolution of chitosan into acid solution, impregnation of activated carbon, agitation, evaporation, and drying. When the chitosan-dissolved acid and its concentration, amounts of chitosan deposited, and agitation conditions were changed, the specific surface area, deposition state on surface, and stability were investigated, and amounts of Cr(VI) adsorbed was measured. In the preparation process, it was proper to agitate the chitosan-dissolved acetic acid solution at room temperature for 1hr. In the deposition of chitosan with low molecular weight, the specific surface area of activated carbon was greatly decreased even at low chitosan loading, but in the case of high molecular weight it was not nearly changed to 10wt% loading. It was known that chitosan was uniformly and physically deposited on activated carbon. The chitosan-deposited activated carbon was stable into the solution over about pH 6. The removal of Cr(VI) was remarkably enhanced by adding the adsorption function of chitosan to the surface of activated carbon with about 5wt% chitosan. It may be therefore used as an adsorbent for removing the pollutants in air and wastewater.

  • PDF

Removal of Chromium (VI) by Escherichia coli Cells Expressing Cytoplasmic or Surface-Displayed ChrB: a Comparative Study

  • Zhou, Xiaofeng;Li, Jianghui;Wang, Weilong;Yang, Fan;Fan, Bingqian;Zhang, Chenlu;Ren, Xiaojun;Liang, Feng;Cheng, Rong;Jiang, Fengying;Zhou, Huaibin;Yang, Juanjuan;Tan, Guoqiang;Lyu, Jianxin;Wang, Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.996-1004
    • /
    • 2020
  • Various genetically engineered microorganisms have been developed for the removal of heavy metal contaminants. Metal biosorption by whole-cell biosorbents can be enhanced by overproduction of metal-binding proteins/peptides in the cytoplasm or on the cell surface. However, few studies have compared the biosorption capacity of whole cells expressing intracellular or surface-displayed metal-adsorbing proteins. In this study, several constructs were prepared for expressing intracellular and surface-displayed Ochrobactrum tritici 5bvl1 ChrB in Escherichia coli BL21(DE3) cells. E. coli cells expressing surface-displayed ChrB removed more Cr(VI) from aqueous solutions than cells with cytoplasmic ChrB under the same conditions. However, intracellular ChrB was less susceptible to variation in extracellular conditions (pH and ionic strength), and more effectively removed Cr(VI) from industrial wastewater than the surface-displayed ChrB at low pH (<3). An adsorption-desorption experiment demonstrated that compared with intracellular accumulation, cell-surface adsorption is reversible, which allows easy desorption of the adsorbed metal ions and regeneration of the bioadsorbent. In addition, an intrinsic ChrB protein fluorescence assay suggested that pH and salinity may influence the Cr(VI) adsorption capacity of ChrB-expressing E. coli cells by modulating the ChrB protein conformation. Although the characteristics of ChrB may not be universal for all metal-binding proteins, our study provides new insights into different engineering strategies for whole-cell biosorbents for removing heavy metals from industrial effluents.