Browse > Article
http://dx.doi.org/10.4014/jmb.1301.01004

Cr(VI) Resistance and Removal by Indigenous Bacteria Isolated from Chromium-Contaminated Soil  

Long, Dongyan (Institute of Environmental Science and Technology, Zhejiang University)
Tang, Xianjin (Institute of Environmental Science and Technology, Zhejiang University)
Cai, Kuan (Global Environmental Technology Co., Ltd.)
Chen, Guangcun (Institute of Environmental Science and Technology, Zhejiang University)
Shen, Chaofeng (Institute of Environmental Science and Technology, Zhejiang University)
Shi, Jiyan (Institute of Environmental Science and Technology, Zhejiang University)
Chen, Linggui (Institute of Environmental Science and Technology, Zhejiang University)
Chen, Yingxu (Institute of Environmental Science and Technology, Zhejiang University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.8, 2013 , pp. 1123-1132 More about this Journal
Abstract
The removal of toxic Cr(VI) by microorganisms is a promising approach for Cr(VI) pollution remediation. In the present study, four indigenous bacteria, named LY1, LY2, LY6, and LY7, were isolated from Cr(VI)-contaminated soil. Among the four Cr(VI)-resistant isolates, strain LY6 displayed the highest Cr(VI)-removing ability, with 100 mg/l Cr(VI) being completely removed within 144 h. It could effectively remove Cr(VI) over a wide pH range from 5.5 to 9.5, with the optimal pH of 8.5. The amount of Cr(VI) removed increased with initial Cr(VI) concentration. Data from the time-course analysis of Cr(VI) removal by strain LY6 followed first-order kinetics. Based on the 16S rRNA gene sequence, strain LY6 was identified as Pseudochrobactrum asaccharolyticum, a species that had never been reported for Cr(VI) removal before. Transmission electron microscopy and energy dispersive X-ray spectroscopy analysis further confirmed that strain LY6 could accumulate chromium within the cell while conducting Cr(VI) removal. The results suggested that the indigenous bacterial strain LY6 would be a new candidate for potential application in Cr(VI) pollution bioremediation.
Keywords
Bioremediation; Cr(VI) resistance; Cr(VI) removal; kinetics; Pseudochrobactrum asaccharolyticum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beller HR, Han RY, Geller JT, Yang L, Brodie EL, Chakraborty R, et al. 2010. Physiological and transcriptional studies of Cr(VI) reduction under aerobic and denitrifying conditions by an aquifer-derived Pseudomonad. Environ. Sci. Technol. 44: 7491-7497.   DOI   ScienceOn
2 Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A. 2006. Effect of chromate stress on Escherichia coli K-12. J. Bacteriol. 188: 3371-3381.   DOI   ScienceOn
3 Al Hasin A, Gurman SJ, Murphy LM, Perry A, Smith TJ, Gardiner PHE. 2010. Remediation of chromium(VI) by a methane-oxidizing bacterium. Environ. Sci. Technol. 44: 400-405.   DOI   ScienceOn
4 Boddu VM, Abburi K, Talbott JL, Smith ED. 2003. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ. Sci. Technol. 37: 4449-4456.   DOI   ScienceOn
5 Camargo FAO, Bento FM, Okeke BC, Frankenberger WT. 2003. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J. Environ. Qual. 32: 1228-1233.   DOI   ScienceOn
6 Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, et al. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25: 335-347.   DOI   ScienceOn
7 Chai LY, Huang SH, Yang ZH, Peng B, Huang Y, Chen YH. 2009. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. J. Hazard. Mater. 167: 516-522.   DOI   ScienceOn
8 Chardin B, Dolla A, Chaspoul F, Fardeau ML, Gallice P, Bruschi M. 2002. Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria. Appl. Microbiol. Biotechnol. 60: 352-360.   DOI
9 Cheng Y J, Y an FB, Huang F, Chu WS, P an DM, Chen Z , et al. 2010. Bioremediation of Cr(VI) and immobilization as Cr(III) by Ochrobactrum anthropi. Environ. Sci. Technol. 44: 6357-6363.   DOI   ScienceOn
10 Chen JM, Hao OJ. 1998. Microbial chromium(VI) reduction. Crit. Rev. Environ. Sci. Tecnol. 28: 219-251.   DOI   ScienceOn
11 Chen XC, Hu SP, Shen CF, Dou CM, Shi JY, Chen YX. 2009. Interaction of Pseudomonas putida CZ1 with c lays and ability of the composite to immobilize copper and zinc from solution. Bioresour. Technol. 100: 330-337.   DOI   ScienceOn
12 Chen XC, Shi JY, Chen YX, Xu XH, Xu SY, Wang YP. 2006. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can. J. Microbiol. 52: 308-316.   DOI   ScienceOn
13 Cheung KH, Gu JD. 2007. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int. Biodeterior. Biodegrad. 59: 8-15.   DOI   ScienceOn
14 Desai C, Jain K, Madamwar D. 2008. Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour. Technol. 99: 6059-6069.   DOI   ScienceOn
15 Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yimaz BC, Mazmanci MA. 2011. Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environ. Sci. Technol. 45: 2278-2285.   DOI   ScienceOn
16 Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K. 2006. Reduction of Cr(VI) by a Bacillus sp. Biotechnol. Lett. 28: 247-252.   DOI
17 Guha H, Jayachandran K, Maurrasse F. 2001. Kinetics of chromium(VI) reduction by a type strain Shewanella alga under different growth conditions. Environ. Pollut. 115: 209-218.   DOI   ScienceOn
18 Garavaglia L, Cerdeira SB, Vullo DL. 2010. Chromium(VI) biotransformation by $\beta$- and $\gamma$-Proteobacteria from natural polluted environments: a combined biological and chemical treatment for industrial wastes. J. Hazard. Mater. 175: 104-110.   DOI   ScienceOn
19 Francisco R, Alpoim MC, Morais PV. 2002. Diversity of chromium-resistant and -reducing bacteria in a chromiumcontaminated activated sludge. J. Appl. Microbiol. 92: 837-843.   DOI   ScienceOn
20 Fulladosa E, Desjardin V, Murat JC, Gourdon R, Villaescusa I. 2006. Cr(VI) reduction into Cr(III) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution. Chemosphere 65: 644-650.   DOI   ScienceOn
21 Guha H, Jayachandran K, Maurrasse F. 2003. Microbiological reduction of chromium(VI) in presence of pyrolusite-coated sand by Shewanella alga Simidu ATCC 55627 in laboratory column experiments. Chemosphere 52: 175-183.   DOI   ScienceOn
22 He MY, Li XY, Liu HL, Miller SJ, Wang GJ, Rensing C. 2011. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J. Hazard. Mater. 185: 682-688.   DOI   ScienceOn
23 Kilic NK, Stensballe A, Otzen DE, Donmez G. 2010. Proteomic changes in response to chromium(VI) toxicity in Pseudomonas aeruginosa. Bioresour. Technol. 101: 2134-2140.   DOI   ScienceOn
24 Konovalova VV, Dmytrenko GM, Nigmatullin RR, Bryk MT, Gvozdyak PI. 2003. Chromium(VI) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme Microb. Technol. 33: 899-907.   DOI   ScienceOn
25 Masood F, Malik A. 2011. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Bull. Environ. Contam. Toxicol. 86: 114-119.   DOI   ScienceOn
26 Li B, Pan DM, Zheng JS, Cheng Y J, Ma XY, Huang F, et al. 2008. Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir 24: 9630-9635.   DOI   ScienceOn
27 McLean J, Beveridge TJ. 2001. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol. 67: 1076-1084.   DOI   ScienceOn
28 Losi ME, Amrhein C, Frankenberger WT. 1994. Environmental biochemistry of chromium. Rev. Environ. Contam. Toxicol. 136: 91-121.
29 Keyhan M, Ackerley DF, Matin A. 2003. Targets of improvement in bacterial chromate bioremediation. In Pellei M, Porta A (eds.). Proceedings of the Second International Conference on Remediation of Contaminated Sediments (Venice, Italy, 30 Sep-3 Oct 2003). Battlle Press, Columbus, OH.
30 Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J. 2004. Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur. J. Biochem. 271: 553-562.   DOI   ScienceOn
31 Megharaj M, Avudainayagam S, Naidu R. 2003. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr. Microbiol. 47: 51-54.   DOI
32 Morales-Barrera L, Guillen-Jimenez FD, Ortiz-Moreno A, Villegas-Garrido TL, Sandoval-Cabrera A, Hernandez-Rodriguez CH, et al. 2008. Isolation, identification and characterization of a Hypocrea tawa strain with high Cr(VI) reduction potential. Biochem. Eng. J. 40: 284-292.   DOI   ScienceOn
33 Pal A, Dutta S, Paul AK. 2005. Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr. Microbiol. 51: 327-330.   DOI
34 Morel MA, Ubalde MC, Brana V, Castro-Sowinski S. 2011. Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity. Arch. Microbiol. 193: 63-68.   DOI
35 Morokutti A, Lyskowski A, Sollner S, Pointner E, Fitzpatrick TB, Kratky C, et al. 2005. Structure and function of YcnD from Bacillus subtilis, a flavin-containing oxidoreductase. Biochemistry 44: 13724-13733.   DOI   ScienceOn
36 Myers CR, Carstens BP, Antholine WE, Myers JM. 2000. Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Appl. Microbiol. 88: 98-106.
37 Ramirez-Ramirez R, Calvo-Mendez C, Avila-Rodriguez M, Lappe P, Ulloa M, Vazquez-Juarez R, et al. 2004. Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie Van Leeuwenhoek 85: 63-68.   DOI   ScienceOn
38 Palmer CD, Wittbrodt PR. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Perspect. 92: 25-40.   DOI   ScienceOn
39 Pattanapipitpaisal P, Brown NL, Macaskie LE. 2001. Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl. Microbiol. Biotechnol. 57: 257-261.   DOI   ScienceOn
40 Pei QH, Shahir S, Raj ASS, Zakaria ZA, Ahmad WA. 2 009. Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World J. Microbiol. Biotechnol. 25: 1085-1093.   DOI
41 Shen H, Wang YT. 1993. Characterization of enzymatic reduction of hexavalent chromium by Escherichia-coli ATCC- 33456. Appl. Environ. Microbiol. 59: 3771-3777.
42 Rehman A, Zahoor A, Muneer B, Hasnain S. 2008. Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater. Bull. Environ. Contam. Toxicol. 81: 25-29.   DOI   ScienceOn
43 Ryan MP, Williams DE, Chater RJ, Hutton BM, McPhail DS. 2002. Why stainless steel corrodes. Nature 415: 770-774.   DOI   ScienceOn
44 Shakoori AR, Makhdoom M, Haq RU. 2000. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl. Microbiol. Biotechnol. 53: 348-351.   DOI   ScienceOn
45 Srivastava J, Chandra H, Tripathi K, Naraian R, Sahu RK. 2008. Removal of chromium(VI) through biosorption by the Pseudomonas spp. isolated from tannery effluent. J. Basic Microbiol. 48: 135-139.   DOI   ScienceOn
46 Stasinakis AS, Thomaidis NS, Mamais D, Karivali M, Lekkas TD. 2003. Chromium species behavior in the activated sludge process. Chemosphere 52: 1059-1067.   DOI   ScienceOn
47 Tang XJ, Shen CF, Shi DZ, Cheema SA, Khan MI, Zhang CK, et al. 2010. Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China. J. Hazard. Mater. 173: 653-660.   DOI   ScienceOn
48 Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV. 2005. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ. Sci. Technol. 39: 3671-3678.   DOI   ScienceOn
49 Sundararajan M, Campbell AJ, Hillier IH. 2011. How do enzymes reduce metals? The mechanism of the reduction of Cr(VI) in chromate by cytochrome c(7) proteins proposed from DFT calculations. Faraday Discuss. 148: 195-205.   DOI   ScienceOn
50 Thakur IS, Srivastava S. 2006. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol. Biochem. 38: 1904-1911.   DOI   ScienceOn
51 Thacker U, Parikh R, Shouche Y, Madamwar D. 2006. Hexavalent chromium reduction by Providencia sp. Process Biochem. 41: 1332-1337.   DOI   ScienceOn
52 Thacker U, Parikh R, Shouche Y, Madamwar D. 2007. Reduction of chromate by cell-free extract of Brucella sp.isolated from Cr(VI) contaminated sites. Bioresour. Technol. 98: 1541-1547.   DOI   ScienceOn
53 Urone PF. 1955. Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents. Anal. Chem. 27: 1354-1355.   DOI
54 Viti C, Pace A, Giovannetti L. 2003. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr. Microbiol. 46: 1-5.   DOI   ScienceOn
55 Wang GJ, He MY, Li XY, Liu HL, Miller SJ, Rensing C. 2011. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J. Hazard. Mater. 185: 682-688.   DOI   ScienceOn
56 Wang PC, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H. 1989. Isolation and characterization of an Enterobacter-cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbi. 55: 1665-1669.
57 Zakaria ZA, Zakaria Z, Surif S, Ahmad WA. 2007. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J. Hazard. Mater. 146: 30-38.   DOI   ScienceOn