• Title/Summary/Keyword: removal system

Search Result 3,552, Processing Time 0.039 seconds

The Change of Biomechanical Milieu after Removal of mstnnnentation in lrunbar Arthrodesis Stiffness of fusion Mass: Finite Element Analysis (척추 유합술 후, 인접 분절의 스트레스에 대한 척추경 나사못에 대한 영향)

  • Kang, Kyoung-Tak;Chun, Heoung-Jae;Son, Ju-Hyun;Kim, Ho-Joong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.664-667
    • /
    • 2008
  • Since the advent of pedicle screw fixation system, posterior spinal fusion has markedly increased This intemal fixation system has been reported to enhance the fusion rates, thereby becoming very popular procedure in posterior spinal arthrodesis. Although some previous studies have shown the complications of spinal instruments removal, i.e. loss of correction and spinal collapse in scoliosis or long spine fusion patients, there has been no study describing the benefit or complications in lumbar spinal fusion surgery of one or two level. In order to clarify the effect of removal of instruments on mechanical motion profile, we simulated a finite element model of instrumented posterolateral fused lumbar spine model, and investigated the change of mechanical motion profiles after the removal of instrumentation.

  • PDF

Development of Complex Module Device for Odor Reduction in Sewage

  • KIM, Young-Do;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • Purpose: This study was conducted to develop a module with higher removal efficiency and effectiveness by adapting two or more deodorization techniques for main cause of odor pollution exposed citizen living near water treatment facilities. Research design, data and methodology: To consider the standard, unity, electrical wire, compatibility of detachable device by installing two types of dry deodorization device within one module for easy replacement. Complex odor, H2S, NH3 were collected from sewage treatment facilities for evaluation of deodorization device. Results: Using the developed application in this study, removal efficiency of complex odor, H2S, NH3 were 93%, 100%, 82%, respectively. Conclusions: The H2S removal efficiency of deodorization device was higher than bio-filter system, which were currently used by sewage treatment. Further, the device should be considered for use in efficient odor removal system.

Removal of Nutrients Using an Upflow Septic Tank(UST) - Aerobic Filter(AF) System (부패조와 호기성 여과공정을 이용한 영양염류 제거)

  • Park, Sang-Min;Jun, Hang-Bae; Bae, Jong-Hun;Park, Woo-Kyun;Park, Noh-Back
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.232-238
    • /
    • 2010
  • The objective of this study was to investigate a small sewage treatment system. This system was developed to improve a nitrogen and phosphorus removal efficiency and generate less solid using upflow septic tank(UST) - aerobic filter(AF) system. The UST equipped with an aerobic filter, the filter was fed with both raw sewage and recycled effluent from the UST to induce the denitrification and solid reduction simultaneously. Overall removal efficiencies of COD and total nitrogen(TN) were above 96% and 73% at recycle ratio of 200%, respectively. Critical coagulant dose without the biochemical activity was found to be 40 mg/L. Removal efficiency of total phosphorus(TP) in influent was above 90% by chemical and biological reactions. Although the phosphorus concentration was low under the high alkalinity in raw sewage, the pH value was unchanged by the coagulant dose.

Particle removal characteristics of high-velocity electrostatic mist eliminator (정전 고속 미스트 엘리미네이터의 포집 효율 특성)

  • Kim, Jin-seon;Kim, Hak-Joon;Han, Bangwoo;Woo, Chang Gyu;Kim, Yong-Jin;Lee, Sangrin;Moon, Sangchul
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.121-133
    • /
    • 2018
  • In this study, we developed a flat-plate type wet electrostatic precipitator that generates stable corona discharge compared to wire type discharge electrode. In order to compare the particle removal efficiency according to the shape of the discharge electrode such as the variation of the horizontal and vertical distance between spiked edges, and the variation of the height of discharge pin support were tested. As a result, when the horizontal distance between spiked edges was increased up to 36 mm, the vertical distance between spiked edges was increased up to 54 mm, and the height of the discharge pin support was increased up to 76 mm, the removal efficiency of PM10 was maintained at approximate 60.0%. Furthermore, the removal efficiency of particles over $5{\mu}m$ was about 80% or more. When the flow rate was 4 m/s, the gap between collection plates was 60 mm, and -14 kV was applied to the discharge electrode. The particle removal efficiency of the flat-plate type electrostatic precipitator was maintained when the horizontal and vertical distance between spiked edges, and the height of the discharge pin support was below a certain level. Those variables may be the important design factors for the shape of the discharge electrode. Therefore, when designing the electrostatic precipitator with multiple channels, the horizontal and vertical distance between spiked edges, and the height of discharge pin support must be selected in consideration of the weight of the discharge electrode and the processing cost.

Natural Radon Removal Efficiency of Small-scale Water Supply System (국내 마을상수도 지하수의 라돈 자연저감)

  • Cho, Byong-Wook;Yun, Uk;Choo, Chang-Oh
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • The purpose of this study was to understand the degree of natural radon removal efficiency of small-scale water supply systems. Six sites were selected for this study, and data on well characteristics (depth, pumping rate, water tank capacity, distance from well to tap water) were obtained. Water samples both from raw water and three tap waters at each site were collected and analyzed for radon concentration. Average radon removal efficiency of the five sites (A-E) in Nov. 2006 was 26.0% while that of the same sites in Dec. 2006 was 45.6% indicating seasonal difference in natural radon removal efficiency. Meanwhile short-term (April 23, April 30, May 8, 2007) radon removal efficiency from the site F was 44.1-49.0%, implying only a little difference in natural radon removal efficiency. The degree of radon removal at tap water was influenced mainly by pumping rate rather than distance from the well and water tank capacity.

Estimation of the Reactor Volume Ratio for Nitrogen Removal in Step-Feed Activated Sludge Process (단계 주입 활성슬러지공법에서 질소제거를 위한 반응기 용적비 추정)

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.130-136
    • /
    • 2006
  • Theoretical total nitrogen removal efficiency and reactor volume ratio in oxic-anoxic-oxic system can be found by influent water quality in this study. The influent water quality items for calculation were ammonia, nitrite, nitrate, alkalinity, and COD which can affect nitrification and denitrification reaction. Total nitrogen removal efficiency depends on influent allocation ratio. The total nitrogen removal follows the equation of 1/(1+b). Optimal reactor volume ratio for maximum TN removal efficiency was expressed by those influent water quality and nitrification/denitrification rate constants. It was possible to expect optimal reactor volume ratio by the calculation with the standard deviation of ${\pm}14.2$.

Influence of Aeration Cycle on Nitrogen and Phosphorus Removal in Two-Stage Intermittent Aeration System (2단 간헐폭기 시스템에서 aeration cycle이 질소 및 인 제거에 미치는 영향)

  • Jeong, Myoung-Sun;Lee, Jun-Ho;Seo, Kwang-Bum;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.193-197
    • /
    • 2003
  • This bench-scale research investigated the aeration cycle(on/off) as the controlling factors for nitrogen and phosphorus removal in a 2-stage, intermittent aeration process. At this experiment, the aeration cycle time(air-on/air-off) was 30min/30min, 60min/60min, 90min/90min. Organic matter removal was observed more than 90% regardless of the aeration cycle and phosphorus removal was relatively high when the aeration cycle time was 60min/60min On the other hand. For all of the aeration cycle, TN removal was appeared less than 55%. This result was probably due to the limitation of the external substrate for heterotrophic nitrification and aerobic denitrification.

  • PDF

Phosphorus Removal by Aluminium Ion Generated with the Pitting Corrosion of Aluminium (알루미늄의 부식으로 발생한 알루미늄 이온에 의한 인 제거)

  • Cheong Kyung-Hoon;Jung Oh-Jin
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.705-710
    • /
    • 1999
  • The fundamental experiments on the phosphorus removal from water were carried out by the batch and continuous reactors which used aluminium and copper plate. In this systems, the phosphorus was removed by aluminium ion generated with the electrochemical interaction (pitting corrosion) of aluminium and copper. In the batch experiments, the efficiencies of phosphorus removal increased when the surfaces of aluminium and copper plate were brushed. The phosphorus removal by aluminium ion was affected the copper plate and NaCI in this system. The optimal pH values were 5 and 6 for the phosphorus removal. The efficiency of phosphorus removal increased with increasing NaCI concentration, surface area of aluminium and copper plate. The $CUSO_4{\cdot}5H_2O$ instead of copper plate could be used as Cu source. The effluent $PO_4-P$ concentration as low as 2 $mg/{\ell}$ could have been obtained during the continuous experiment at HRT of 48 hrs.

  • PDF