• Title/Summary/Keyword: removal ratio

Search Result 1,600, Processing Time 0.028 seconds

Comparison of Grain Filling Characteristics by Source-Sink Size Control in Glutinous and Non-glutinous Near Isogenic Line of Rice (근동질유전자 계통인 찰벼와 메벼의 전엽과 절영처리에 따른 등숙특성 비교)

  • 김춘송;안종국;정일민;강항원;이재생;고지연;박성태
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.243-250
    • /
    • 2004
  • Two cultivars which are glutinous (Hawcheongchalbyeo) and non-glutinous (Hawcheongbyeo) near isogenic line of rice, were used for this study. The objective of this experiment was to gain the basic information for increasing grain yield of waxy rice by means of source and sink size control. In both Hwacheongbyeo and Hawcheongchalbyeo, the trend of decrease in total and average spikelet weight was ranked as follows; removal of penultimate leaf< removal of flag leaf< removal of flag leaf and 3ya leaf from the top < removal of flag leaf and penultimate leaf < removal of flag leaf, penultimate leaf, and 3rd leaf from the top. The reduction yale of total and average spikelet weight per panicle of Hwacheongbyeo was higher than those of Hwacheongchalbyeo according to the removal of flag leaf, penultimate leaf, and 3rd leaf from the top. In both cultivars, high-density grain ratio and grain filling ratio of the primary branches were higher Hun those of the secondary branches by leaf clipping treatment. The spikelet number and total spikelet weight per pinicle in both Hwacheongbyeo and Hwacheongchalbyeo were decreased by removal of spikelets on branches compared with control, whereas average spikelet weight and grain filling ratio were increased. The increase rate of average spikelet weight of Hwacheongchalbyeo was much higher than that of Hwacheongbyeo by sink size control. High-density grain ratio by removal of spikelets on branches was higher in Hwacheongchalbyeo, but filled grain ratio was higher in Hwacheongbyeo.

Determination optimal ratio of ammonium to nitrite in application of the ANAMMOX process in the mainstream (Mainstream ANAMMOX 공정 적용시 암모니아성 질소 대비 아질산성 질소 비율 도출 연구)

  • Lee, Dawon;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • As the concentration of nitrogen in the sewage flowing into the sewage treatment plant increases due to urbanization and industrialization, the degree of adverse effects such as eutrophication and toxicity to the aquatic ecosystem is also increasing. In order to treat sewage containing high concentration of nitrogen, various studies on the biological nitrogen removal process are being conducted. Existing biological nitrogen removal processes require significant costs for supplying oxygen and supplementing external carbon sources. In this respect, as a high-level nitrogen removal process with economic improvement is required, an anaerobic ammonium oxidation process (ANAMMOX), which is more efficient and economical than the existing nitrification and denitrification processes, has been proposed. The purpose of this study is to confirm the stability of the ANAMMOX process in the water treatment process and to derive the ratio of ammonia nitrogen (NH4+) to nitrite nitrogen (NO2-) for the implementation of the mainstream ANAMMOX process. A laboratory-scale Mainstream ANAMMOX reactor was operated by applying the ratio calculated based on the substrate ratio suggested in the previous study. In the initial range, the removal efficiency of NH4+ was 58~86%, and the average removal efficiency was 70%. In the advanced range, the removal efficiency of NH4+ was 94~99%, and the average removal efficiency was 95%. As a result of the study, as the NH4+/NO2- ratio increased, the stability of the mainstream ANAMMOX process was secured, and it was confirmed that the NH4+ removal efficiency and the total nitrogen (TN) removal efficiency increased. As a result, the results of this study are expected to be used as basic data in the application of the ANAMMOX process in the mainstream.

Analysis of Factors Impacting Atmospheric Pressure Plasma Polishing

  • Zhang, Ju-Fan;Wang, Bo;Dong, Shen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.39-43
    • /
    • 2008
  • Atmospheric pressure plasma polishing (APPP) is a noncontact precision machining technology that uses low temperature plasma chemical reactions to perform atom-scale material removal. APPP is a complicated process, which is affected by many factors. Through a preliminary theoretical analysis and simulation, we confirmed that some of the key factors are the radio frequency (RF) power, the working distance, and the gas ratio. We studied the influence of the RF power and gas ratio on the removal rate using atomic emission spectroscopy, and determined the removal profiles in actual operation using a commercial form talysurf. The experimental results agreed closely with the theoretical simulations and confirmed the effect of the working distance. Finally, we determined the element compositions of the machined surfaces under different gas ratios using X-ray photoelectron spectroscopy to study the influence of the gas ratio in more detail. We achieved a surface roughness of Ra 0.6 nm on silicon wafers with a peak removal rate of approximately 32 $mm^{3}$/min.

An Analysis of Design Factors for Developing Opuntia Humifusa Spines Removal Device

  • Jang, Ik Joo;Ha, Yu Shin
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.215-221
    • /
    • 2013
  • Purpose: Opuntia Humifusa has been used in the food and beauty industry after removing spines and glochids clearly. This study compared the methods used in removing spines and analyzed the design factors for developing a spine removal device. Method: This study compared the spine removal ratios in accordance with the length of brush, water spray pressure, the number of water spray, and the size of Opuntia Humifusa in a rotating brush device and a water spray device. In addition, this study compared the reversal ratios according to the inclination angle of a conveyor, the drop height of Opuntia Humifusa, and the speed of the conveyor to analyze the reversal factors. Results: The spines were not removed clearly in the rotating brush method, and the glochids were nailed deeply. The spine removal ratio was 96.9% with the water spray pressure of 20 $kgf/cm^2$ and the conveyor speed of 10 cm/s in the water spray method. The number of water spray was correlated with the spine removal ratio, and the average spine removal ratio was 95.6% with three cycles of water spray. The reversal ratio was 97% with the inclination angle of the conveyor $20^{\circ}$, the drop height of 380 mm, and the conveyor speed of 10 cm/s. Conclusions: In order to develop a Opuntia humifusa spine removing device, this study compared the rotating brush and water spray methods. As a result, each spine removal performance of the rotating brush and water spray methods was 96.9% and 95.6%, respectively. Although the performance of the rotating brush method was slightly higher than that of the water spray method, the water spray method was suitable for removing spines from stem because the epidermis of stem was damaged and the glochids were nail deeply in the rotating brush method. Further studies on appropriate arrangement of spray nozzles, maintaining the optimal water spray pressure, the speed and angle control of the feeding conveyor, and devices for inducing the stem to the center will be needed in combining the water spray device and the reversal device.

Selective nitrification and denitrification in fixed bed biofilm reactors

  • Yun, Ho-Jun;An, Seung-Ho;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.278-281
    • /
    • 2001
  • A fixed bed biofilm reactor filled with ceramic media were used to remove nitrogen by selective nitrification (ammonium to nitrite). The effects of experimental conditions (nitrogen load, dissolved oxygen, nitrite ratio, C/N ratio) on denitrification were investigated. The reactor showed more than 80% average T-N removal efficiencies at T-N loading in the range of $1.1{\sim}3.3$ kg $T-N/m^3{\cdot}d$ C/N at the C/N ratio of 1. T-N removal efficiencies increased as nitrite ratio.

  • PDF

Remediation Groundwater contaminated with chromate using Micellar - enhanced ultrafiltration(MEUF)

  • 양지원;백기태;김보경
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.306-309
    • /
    • 2002
  • Micellar-enhanced ultrafiltration was investigated to remediate groundwater contaminated with chromate using a cationic surfactant, cetylpyridinium chloride (CPC). Removal of chromate was expressed as a function of molar ratio of CPC to chromate. With 10 molar ratio of CPC, removal efficiency of chromate was reached to over 99%. The rejection of CPC was 90% at 1 molar ratio, gradually increased as the molar ratio increased.

  • PDF

Effect of HRT and Internal Recycle Ratio on Removal of Organic and Nitrogen in Swine Wastewater by Anoxic-Oxic Process Combined with Membrane (분리막이 결합된 무산소·호기 공정을 이용한 축산폐수처리에서 수리학적체류시간 및 내부반송율이 유기물 및 질소제거에 미치는 영향)

  • Whang, gye dae;Lee, bong hee;Lee, hyun duk
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.603-609
    • /
    • 2004
  • The objective of this study was to determine the optimal operation conditions in an anoxic oxic process to eliminate both organic and nitrogen matters in swine wastewater. For the purpose of this, the removal efficiency was evaluated with various HRTs and internal recycling ratio. During the whole 580 days of experiment, HRTs had been gradually decreased in an order of 20, 14, 12 and l0days, and the internal recycle ratio was kept at 20Q. So as to determine the effect of the internal recycle ratio on the nitrogen removal, the internal recycle ratio had been gradually increased from 20Q to 50Q while HRT was maintained at 12days. As a result, it was shown that the removal efficiency of organic matter was above 95% regardless of changing of HRTs. The average influent concentration of TCODcr and SCODcr were 24,854 mg/L and 18,920 mg/L, respectively. Average removal efficiency of TKN was shown to be nearly 98% when HRT was kept at 12days; however, the $NH_4{^+}-N$ concentration of effluent was shown to be increased when the loading rate of $NH_4{^+}-N$ was increased to $0.602 kgNH_4{^+}-N/m^3$-day by means of decreasing HRT to 10days. It was concluded that nitrogen loading rates should be more considered rather than organic loading rates in case of determining an optimal HRT. When gradually increasing the internal recycle ratio from 20Q to 50Q, the removal efficiency of organic matters and TKN were 96% and 98%, respectively so that no significant changes in removal efficiency was detected. However, when the internal recycle ratio was kept at 50Q, it was revealed that the $NO_3-N$ concentration of effluent seemed to drop and the average $NO_3-N$ concentration of effluent was around 52 mg/L.

Development of Multi-functional Ceramics for Removal of Heavy Metals in Acid Wastewater using Industrial By-product (산업부산물을 활용한 산성폐수 내 중금속 제거용 다기능성 세라믹 소재의 개발)

  • Kim, Dong-Hee;Yim, Soo-Bin
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.277-284
    • /
    • 2012
  • This study developed a new ceramics in which natural zeolite was mixed and calcined with industrial by-product such as converter slag, red mud, and fly ash and evaluated the feasibility of the ceramics for removal of heavy metals in acid wastewater. The removal rate of heavy metal by ceramics increased in the order of ZS (zeolite and slag) > ZR (zeolite and red mud) > ZF (zeolite and fly ash) ceramics. The alkalinity increment and coherence of ceramics were increased in the order of ZS > ZR > ZF ceramics. The mixing ratio of natural zeolite to industrial by-product for maximum removal efficiency of heavy metal was 1:1 for ZS ceramics and 1:3 for ZR and ZF ceramics. The order of removal efficiency of heavy metal was observed to be ZS > ZR > ZF ceramics under the mixing ratio of 1:1 for ZS ceramics and 1:3 for ZR and ZF ceramics. The removal efficiency of heavy metal by ZS ceramics with 1:1 mixing ratio was Al 100%, Cd 54.6%, Cr 99.9%, Cu 98.7%, Fe 99.9%, Mn 42.2%, Ni 59.9%, Pb 99.8%, Zn 87.6%, respectively. In addition, the removal capacity of heavy metal by ZS ceramics was observed to be Al 2.01 mM/g, Cd 0.27 mM/g, Cr 1.02 mM/g, Cu 0.83 mM/g, Fe 0.95 mM/g, Mn 0.41 mM/g, Ni 0.55 mM/g, Pb 0.25 mM/g, Zn 0.70 mM/g, respectively. The comparative evaluation in the light of removal capacity, alkalinity increment, and coherence of ceramics showed the ZS ceramics had higher feasibility as a media than others for removal of heavy metals in acid wastewater.

Experimental Study on Capacity Variation of Paving Materials with TiO2 in Wet Condition (광촉매 이산화티타늄(TiO2)을 혼합한 도로 포장재의 습윤 조건에서의 성능 변화에 관한 실험적 연구)

  • Seo, Dawa;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.49-55
    • /
    • 2016
  • This study aims to present the practical Nitrogen monoxide (NO) removal capacity of cement mortar with Titanium dioxide ($TiO_2$) which is one of the paving materials by considering the environment of pavement in urban areas. NO removal capacity test under designated conditions of humidity of inflow gas and the test with variation of the degree of saturation of specimen were conducted. In the test for humidity, dry specimen is subject to the test and NO removal ratio was observed. Humidity-NO removal ratio curve is a log normal distribution in shape, and the maximum NO removal ratio appears at specific humidity. NO removal capacity test relying on the degree of saturation was carried out with wet specimen to reflect the unsaturated pavement by rainfall and domestic sewage. Wet specimen presents less NO removal capacity than dry specimen and the recovering evolution of NO removal capacity follows evaporation. Moreover, $TiO_2$ under the specific depth of specimen hardly contributes to NO removal capacity.

Remediation of groundwater contaminated with MTBE using micellar solubilization

  • 백기태;조현정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.151-154
    • /
    • 2001
  • To assess the remediation possibility of groundwater contaminated with MTBE, micellar solubilization by various surfactants was evaluated. Micellar solubilization is basic phenomena to apply micellar enhanced ultrafiltration for groundwater remediation contaminated with MTBE. Sodium dodecyl sulfate (SDS) shows the best removal efficiency among various nonionic, cationic and anionic surfactants. Molar ratio of SDS to MTBE was the most important factor for removal of MTBE using micellar solubilization. With the ratio of more than 13, the removal efficiency was saturated to 55%.

  • PDF