• Title/Summary/Keyword: removal of cells

Search Result 527, Processing Time 0.03 seconds

Effects of low-head dam removal on benthic macroinvertebrate communities in a Korean stream

  • Kil, Hye-Kyung;Bae, Yeon-Jae
    • Animal cells and systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • This study was conducted to examine how a low-head dam removal (partial removal) could affect benthic macroinvertebrate communities in a stream. Benthic macroinvertebrates and substrates were seasonally sampled before and after dam removal (March 2006-April 2007). Benthic macroinvertebrates and substrates were quantitatively sampled from immediately upstream (upper: pool) and downstream (lower: riffle) sites, the location of the dam itself (middle), and immediately above the impoundment (control: riffle). After the removal, species richness and density of benthic macroinvertebrates as well as the EPT group (Ephemeroptera, Plecoptera and Trichoptera) increased to higher levels than those before the removal, while functional feeding groups and habitat orientation groups changed more heterogeneously at the upper site. At the lower site, species richness and density decreased somewhat immediately after dam removal, which was associated with an increase of silt and sand, but recovered after monsoon floods which helped to enhance substrate diversity at the upper site. Decreased dominance index and increased diversity index in both the upper and lower sites are evidence of positive effects from the dam removal. In conclusion, we suggest that even a partial removal of a dam, resulting in increased substrate diversity in the upper site, could sufficiently help rehabilitate lost ecological integrity of streams without major habitat changes.

Development of an Immobilized Adsorbent for In Situ Removal of Ammonium Ion from Animal Cell Culture Media and Its Applications to Animal Cell Culture System : II. Application to Cell Culture System (동물세포 배양액으로부터 암모늄 이온의 동시제거를 위한 고정화 흡착제의 개발과 동물세포 배양 시스템에의 응용 : II. 세포배양 시스템에의 응용)

  • 박병곤;이해익;전계택;김익환;정연호
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.411-417
    • /
    • 1998
  • The possibility of application of membrane type immobilized adsorbent to the fed-batch or perfusion culture system with anchorage-independent cells as well as batch system was investigated. The improvement in cell density and cell viability due to the combination of immobilized adsorbent with each culture system was evaluated for the investigation, and the optimum culture system employing immobilized adsorbent system was suggested based on the results. It was observed that the system with immobilized adsorbent showed better cell growth and cell viability than that without immobilized adsorbent in every operation system of batch, fed-batch, and perfusion. In case of batch system, 200% improvement of maximum cell density was observed in the system where ammonium chloride was added on purpose. And 50% improvement of maximum cell density was observed in the fed-batch system where ammonium ion accumulates significantly, while small increase in maximum cell density was observed in the perfusion system where dilution of waste byproducts exists. Especially, the fed-batch system showed the most significant improvement on cell growth because both compensation of nutrient and removal of ammonium ion occurred simultaneously in the system. Therefore a combined system of immobilized adsorbent and fed-batch operation could be suggested as an optimum system with in situ removal of ammonium ion.

  • PDF

Nitrogen removal and electrochemical characteristics depending on separators of two-chamber microbial fuel cells

  • Lee, Kang-yu;Choi, In-kwon;Lim, Kyeong-ho
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.443-448
    • /
    • 2019
  • The present study was conducted to compare the voltage generation in two-chamber microbial fuel cells (MFCs) with a biocathode where nitrate and oxygen are used as a terminal electron acceptors (TEA) and to investigate the nitrogen removal and the electrochemical characteristics depending on the separators of the MFCs for denitrification. The maximum power density in a biocathode MFC using an anion exchange membrane (AEM) was approximately 40% lower with the use of nitrate as a TEA than when using oxygen. The MFC for denitrification using an AEM allows acetate ($CH_3COO^-$) as a substrate and nitrate ($NO_3{^-}$) as a TEA to be transported to the opposite sides of the chamber through the AEM. Therefore, heterotrophic denitrification and electrochemical denitrification occurred simultaneously at the anode and the cathode, resulting in a higher COD and nitrate removal rate and a lower maximum power density. The MFC for the denitrification using a cation exchange membrane (CEM) does not allow the transport of acetate and nitrate. Therefore, as oxidation of organics and electrochemical denitrification occurred at the anode and at the cathode, respectively, the MFC using a CEM showed a higher coulomb efficiency, a lower COD and nitrate removal rate in comparison with the MFC using an AEM.

The Salt Removal Efficiency Characteristics of Carbon Electrodes Using Fabric Current Collector with High Tensile Strength in a Capacitive Deionization Process (인장강도가 뛰어난 직물집전체를 이용한 탄소전극의 축전식 탈염공정에서의 제염효과)

  • Seong, Du-Ri;Kim, Dae Su
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.466-473
    • /
    • 2020
  • Fabric current collector can be a promising electrode material for Capacitive Deionization (CDI) system that can achieve energy-efficient desalination of water. The one of the most attractive feature of the fabric current collector is its high tensile strength, which can be an alternative to the low mechanical strength of the graphite foil electrode. Another advantage is that the textile properties can easily make shapes by simple cutting, and the porosity and inter-fiber space which can assist facile flow of the aqueous medium. The fibers used in this study were made of woven structures using a spinning yarn using conductive LM fiber and carbon fiber, with tensile strength of 319 MPa, about 60 times stronger than graphite foil. The results were analyzed by measuring the salt removal efficiency by changing the viscosity of electrode slurry, adsorption voltage, flow rate of the aqueous medium, and concentration of the aqueous medium. Under the conditions of NaCl 200 mg/L, 20ml/min and adsorption voltage 1.5 V, salt removal efficiency of 43.9% in unit cells and 59.8% in modules stacked with 100 cells were shown, respectively. In unit cells, salt removal efficiency increases as the adsorption voltage increase to 1.3, 1.4 and 1.5 V. However, increasing to 1.6 and 1.7 V reduced salt removal efficiency. However, the 100-cell-stacked module showed a moderate increase in salt removal efficiency even at voltages above 1.5 V. The salt removal rate decreased when the flow rate of the feed was increased, and the salt removal rate decreased when the concentration of the feed was increased. This work shows that fabric current collector can be an alternative of a graphite foil.

A Study on the Reduction Process of VOCs Emission from Paint Booth - A Hybrid Process of Biotrickling Filter and Activated Sludge Reactor

  • Lim Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E2
    • /
    • pp.41-48
    • /
    • 2005
  • A novel hybrid system composed of a biotrickling filter and an activated sludge reactor was investigated under the conditions of four different SRTs (sludge retention times). The performance of the hybrid reactor was found to be directly comparable among the four different sludge ages. Discernible differences in the removal performance were observed among four different SRTs of 2, 4, 6, and 8 days. High removal efficiency was achieved by continuous circulation of activated sludge over the immobilized mixture culture, which allowed on pH control, addition of nutrients, and removal of paint VOCs (volatile organic compounds). The results also showed that the removal efficiency for a given pollutant depends on the activity of microorganisms based on the SRT. As the SRT increased gradually from 2 to 8 days, the average removal performance decreased. The highest removal rate was achieved at the SRT of 2 days at which the highest OUR (oxygen uptake rate), $6.1mg-O_2/liter-min$ was measured. Biological activity in the recycle microbes decreased to a much lower level, $3.6mg-O_2/liter-min$ at a SRT of 8 days. It is thus believed that young microorganisms were more active and more efficient for the VOCs removal of low concentrations and high flow rates. The apparent correlation of $R^2=0.996$ between the average removal efficiency and the average OUR at each SRTs suggests that VOCs degradation by young cells significantly affected the overall removal efficiency for the tested SRTs.

Comparison of embryonic competence and clinical outcomes between early and late cumulus cell removal for in vitro fertilization

  • Pongsuthirak, Pallop
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.362-367
    • /
    • 2021
  • Objective: The impact of early mechanical removal of cumulus cells on fertilization and embryonic development is not yet precisely known. This study aimed to investigate the effects of early and late cumulus cell removal on fertilization, polyspermy, embryonic development potential, blastocyst development, and clinical outcomes. Methods: A prospective study was conducted of patients who underwent in vitro fertilization between September 2019 and October 2020. Sibling oocytes were randomly allocated after insemination to early cumulus cell removal at 6 hours (group I) and late cumulus cell removal at 16-18 hours (group II). If total fertilization failure (TFF) was determined to have occurred at early cumulus cell removal, rescue intracytoplasmic sperm injection (ICSI) was performed. Fertilization, embryonic development, and pregnancy outcomes were compared. Results: A total of 912 oocytes were assigned to group I (458 oocytes) and group II (454 oocytes). Fertilization, polyspermy, embryo quality, and pregnancy outcomes were not significantly different between both groups. Rescue ICSI enabled fertilization of 79.2% of the TFF oocytes. Conclusion: Early cumulus cell removal at 6 hours had no significant difference in fertilization, polyspermy, embryo development, or obstetric and perinatal outcomes compared to late removal. Early cumulus cell removal combined with early rescue ICSI may have the potential to help couples with TFF.

Effects of Sediment Removal on Water Quality, Phytoplankton Communities and Benthic Macroinvertebrate (퇴적물 제거가 수질과 식물플랑크톤, 저서성 대형무척추동물에 미치는 영향)

  • Youn, Seok Jea;Kim, Hun Nyun;Kim, Yong Jin;Lee, Eun Jeong;Byeon, Myeong-Seop;Lee, Byoung-cheun;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.301-307
    • /
    • 2018
  • This study investigated the effects of sediment removal on water quality and phytoplankton development by setting up mesocosms at Uiam Lake, South Korea, and analyzing the environmental parameters and phytoplankton communities between June and October 2015. The comparison between testbed without sediment removal (TB-1) and testbed after sediment removal (TB-2) gave similar values for water temperature, pH, dissolved oxygen (DO), and electrical conductivity. Nevertheless, the average electrical conductivities of the two testbeds were $139{\mu}S/cm$ and $135{\mu}S/cm$, which were lower than the value obtained from the external control point (TB-con; $154{\mu}S/cm$). The small difference in total phosphorus (TP) and total nitrogen (TN) concentrations between the two testbeds implied that sediment removal did not greatly reduce nutrients; however, the phytoplankton cell count had decreased by approximately 37 % in TB-2 (average 1,663 cells/mL) compared to TB-1 (average 2,625 cells/mL). Compared to TB-con, the phosphorus and nitrogen concentrations of the two testbeds had decreased by 39 % and 30 %, respectively, whereas the phytoplankton abundance had decreased by up to 73 %, perhaps because of the blocked inflow of nutrients and the stabilized body of water caused by the installation of the mesocosm. The concentration of geosmin was lower in testbeds than in the external point, because installation of the structures had reduced the cyanobacteria biomass.

The BNR-MBR(Biological Nutrient Removal-Membrane Bioreactor) for nutrient removal from high-rise building in hot climate region

  • Ratanatamskul, C.;Glingeysorn, N.;Yamamoto, K.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • The overall performance of BNR-MBR, so-called Anoxic-Anaerobic-Aerobic Membrane Bioreactor ($A^3$-MBR), developed for nutrient removal was studied to determine the efficiencies and mechanisms under different solid retention time (SRT). The reactor was fed by synthetic high-rise building wastewater with a COD:N:P ratio of 100:10:2.5. The results showed that TKN, TN and phosphorus removal by the system was higher than 95%, 93% and 80%, respectively. Nitrogen removal in the system was related to the simultaneous nitrification-denitrification (SND) reaction which removed all nitrogen forms in aerobic condition. SND reaction in the system occurred because of the large floc size formation. Phosphorus removal in the system related to the high phosphorus content in bacterial cells and the little effects of nitrate nitrogen on phosphorus release in the anaerobic condition. Therefore, high quality of treated effluent could be achieved with the $A^3$-MBR system for various water reuse purposes.

Neuraminidase Treatment Enhances Allogeneic Stimulation of Unprimed $CD8^+$ T Cells

  • Kim, Kil-Hyoun
    • BMB Reports
    • /
    • v.30 no.6
    • /
    • pp.385-389
    • /
    • 1997
  • Many cell types are known to stimulate $CD8^+$ T cells in allogeneic recognition such as mixed lymphocyte reaction (MLR). Whereas dendritic cells are most potent among them. T cells are usually considered very poor in stimulating $CD8^+$ T cells although there are some tumor cells that are weakly stimulatory. T cells, as a stimulator, cultured in the presence of concanavalin A that were otherwise nonstimulatory to $CD8^+$ T cells appeared to stimulate $CD8^+$ T cells strongly when they were pretreated with neuraminidase. The enhancement of MLR by neuraminidase could be achieved by treating either the stimulators or responders with neuraminidase. Removal of negatively-charged sialic acid moieties from the cell surface, which reduced electrostatic repulsion between responders and stimulators to give better cell-cell contact might be responsible for the enhanced MLR. In addition, neuraminidase treatment also appeared to deliver activation signal to responding T cells since it could activate $CD8^+$ T cells in synergy with phorbol myristate acetate. The maximal responses were observed when both responders and stimulators were treated with neuraminidase.

  • PDF