• Title/Summary/Keyword: remote sensor data management system

Search Result 78, Processing Time 0.027 seconds

A Development and Performance Test of Voltage Measurement Accuracy Assessment System for Distribution Equipment (배전기기 전압계측 정밀도 평가시스템 개발 및 성능시험)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Kim, Jae-Han
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.83-89
    • /
    • 2013
  • Power distribution system has been changed from radial system to closed loop or mesh system due to connection of distributed generation growth. Data from distribution equipments which are installed at distribution line is required to be accurate for the performance of DMS(Distribution Management System). This paper analyzes the voltage measurement data from distribution equipment. However, the results of the analysis are confirmed to have some errors in voltage measurement data from distribution equipment. These errors come from aging of voltage sensor in distribution equipment and inaccurate data transfer to FRTU(feeder remote terminal unit) through the controller. The main problem is that the voltage measurement data of distribution equipment can not be assessed after it's first installation at the distribution line. The voltage measurement accuracy assessment system is to assess the voltage measurement data from distribution equipment on hot-line. This study had a field test to verify the performance of system.

DESIGN AND IMPLEMENTATION OF METADATA MODEL FOR SENSOR DATA STREAM

  • Lee, Yang-Koo;Jung, Young-Jin;Ryu, Keun-Ho;Kim, Kwang-Deuk
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.768-771
    • /
    • 2006
  • In WSN(Wireless Sensor Network) environment, a large amount of sensors, which are small and heterogeneous, generates data stream successively in physical space. These sensors are composed of measured data and metadata. Metadata includes various features such as location, sampling time, measurement unit, and their types. Until now, wireless sensors have been managed with individual specification, not the explicit standardization of metadata, so it is difficult to collect and communicate between heterogeneous sensors. To solve this problem, OGC(Open Geospatial Consortium) has proposed a SensorML(Sensor Model Language) which can manage metadata of heterogeneous sensors with unique format. In this paper, we introduce a metadata model using SensorML specification to manage various sensors, which are distributed in a wide scope. In addition, we implement the metadata management module applied to the sensor data stream management system. We provide many functions, namely generating metadata file, registering and storing them according to definition of SensorML.

  • PDF

Diagnosis System of Obsolete Sunlight Generation Equipment (태양광 발전 노후 설비 진단 시스템)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.535-537
    • /
    • 2021
  • Sensor node and remote terminal unit (RTU) for diagnosis of obsolete sunlight generation equipments is proposed in this research. Sensor node can surveil monitor ambient temperature, current and voltage of invertor, and can communicate with RTU through RS485 channel. RTU can gather sensing data from sensor nodes and can transmit these data to management server through LTE CAT. M1 channel.

  • PDF

Development of Greenhouse Environment Monitoring & Control System Based on Web and Smart Phone (웹과 스마트폰 기반의 온실 환경 제어 시스템 개발)

  • Kim, D.E.;Lee, W.Y.;Kang, D.H.;Kang, I.C.;Hong, S.J.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2016
  • Monitoring and control of the greenhouse environment play a decisive role in greenhouse crop production processes. The network system for greenhouse control was developed by using recent technologies of networking and wireless communications. In this paper, a remote monitoring and control system for greenhouse using a smartphone and a computer with internet has been developed. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on sensors and equipments network. Graphical user interface for an integrated management system was designed with bases on the HMI and the experimental results showed that a sensor data and device status were collected by integrated management in real-time. Because the sensor data and device status can be displayed on a web page, transmitted using the server program to remote computer and mobile smartphone at the same time. The monitored-data can be downloaded, analyzed and saved from server program in real-time via mobile phone or internet at a remote place. Performance test results of the greenhouse control system has confirmed that all work successfully in accordance with the operating conditions. And data collections and display conditions, event actions, crops and equipments monitoring showed reliable results.

Distributed Multi-Sensor based Laboratory Safety Management System (분산 다중 센서 기반 실험실 안전 관리 시스템)

  • Hwang, Doyeun;Kim, Hwangryong;Kim, Eunseong;Jung, Daejin;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.585-586
    • /
    • 2019
  • Recently, the systems for managing the labs provide services that can be managed in real time by using various sensors based on IoT. The system collects sensor data and transmits it to the server, identifies the dangerous situation, and sends operation commands to the devices. These systems have a centralized structure that slows data processing when managing multiple laboratories. To solve this problem, this paper proposes a system that manages laboratories in distributed processing environment to identify and manage risk situations. The sensor module is used to control the laboratory and to automatically identify and respond to the dangerous situation.

  • PDF

FEATURE-BASED SPATIAL DATA MODELING FOR SEAMLESS MAP, HISTORY MANAGEMENT AND REAL-TIME UPDATING

  • Kim, Hyeong-Soo;Kim, Sang-Yeob;Seo, Sung-Bo;Kim, Hi-Seok;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.433-436
    • /
    • 2008
  • A demand on the spatial data management has been rapidly increased with the introduction and diffusion process of ITS, Telematics, and Wireless Sensor Network, and many different people use the digital map that offers various thematic spatial data. Spatial data for digital map can manage to tile-based and feature-based data. The existing tile-based digital map management systems have difficult problems of data construction, history management, and updating based on a spatial object. In order to solve these problems, this paper proposed the data model for the feature-based digital map management system that is designed for feature-based seamless map, history management, real-time updating of spatial data, and analyzed the validity and utility of the proposed model.

  • PDF

Implementation of Telematics System Using Driving Pattern Detection Algorithm (운전패턴 검출 알고리즘을 적응한 텔레매틱스 단말기 구현)

  • Kin, Gi-Seok;Jung, Hee-Seok;Yun, Kee-Bang;Jeong, Kyung-Hoon;Kim, Ki-Doo
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.33-41
    • /
    • 2008
  • Telematics system includes the "vehicle remote diagnosis technology", "driving pattern analysis technology" which are commercially attractive in the real life. To implement those technologies, we need vehicle signal interface, vehicle diagnosis interface, accelerometer/yaw-rate sensor interface, GPS data processing, driving pattern analysis, and CDMA data processing technique. Based on these technologies, we analyze the error existence by diagnosing the EMS(Engine Management System), TMS(Transmission Management System), ABS/TCS, A/BAG in real time. And we are checking about a driving pattern and management of the vehicle, which are sent to the information center through the wireless communication. These database results will make the efficient vehicle and driver management possible. We show the effectiveness of our results by field driving test after completing the H/W & S/W design and implementation for vehicle remote diagnosis and driving pattern analysis.

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF

Real-time measurement management system UI development linked the Water treatment facilities Broadband Convergence Network (수처리시설용 광대역 통합망 연계형 실시간 계측 관리 시스템 UI개발)

  • Yang, Seungyoun;Kim, Jintae;Oh, Hwanjin;Lee, Minwoo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.83-86
    • /
    • 2015
  • In this paper, we propose a real-tim measurement management system UI development linked the Water treatment facilities broadband Convergence Network. The sensor and the image data received by the server develop a program to interact with Web through water treatment facilities broadband convergence network. So, Separately develop UI capable of independently operating. Building a web server for remote monitoring of the transmission sensor and the image data. And Monitoring and control is possible the sensor data and image data through the Web-based UI. We can grasp the current state such as measurement time, concentration and depth of interface through the proposed real-time measurement management system UI development liked the water treatment facilities broadband convergence network. So, we can check in whether the normal operation of water treatment facilities and whether the casualties such as fire and security. As well as real time to see the information at a glance due to UI development can be raal-time monitoring of real-time measurement management system.

An integrated monitoring system for life-cycle management of wind turbines

  • Smarsly, Kay;Hartmann, Dietrich;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.209-233
    • /
    • 2013
  • With an annual growth rate of about 30%, wind energy systems, such as wind turbines, represent one of the fastest growing renewable energy technologies. Continuous structural health monitoring of wind turbines can help improving structural reliability and facilitating optimal decisions with respect to maintenance and operation at minimum associated life-cycle costs. This paper presents an integrated monitoring system that is designed to support structural assessment and life-cycle management of wind turbines. The monitoring system systematically integrates a wide variety of hardware and software modules, including sensors and computer systems for automated data acquisition, data analysis and data archival, a multiagent-based system for self-diagnosis of sensor malfunctions, a model updating and damage detection framework for structural assessment, and a management module for monitoring the structural condition and the operational efficiency of the wind turbine. The monitoring system has been installed on a 500 kW wind turbine located in Germany. Since its initial deployment in 2009, the system automatically collects and processes structural, environmental, and operational wind turbine data. The results demonstrate the potential of the proposed approach not only to ensure continuous safety of the structures, but also to enable cost-efficient maintenance and operation of wind turbines.