• Title/Summary/Keyword: remote sensing of groundwater

Search Result 39, Processing Time 0.027 seconds

Satellite Remote Sensing of Groundwater: modeling, algorithm development and validation

  • Ghulam, Abduwasit;Qin, Qiming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1383-1385
    • /
    • 2003
  • Remote sensing has been widely used in the exploration of groundwater. In this paper, on the establishment of empirical function between ground water and soil moisture content 6S code is used to reduce uncertainties in the remote sensing of groundwater. Then ground water levels are calculated using 6S corrected and uncorrected ETM+ image along with isochronous meteorological information. Greater correspondence between field examined and satellite monitoring data is obtained from corrected image than from the uncorrected image.

  • PDF

Estimated groundwater recharge including water pipes leakage in Kumagaya City

  • Saito, Keisuke;Ogawa, Susumu;Takamura, Hiroki;Yashiro, Yusuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.735-737
    • /
    • 2003
  • The drying up of seepage in Kumagaya City was caused by the increase of impermeable area with urbanization. The project of rain fall infiltration facilities has been planned for improvement of a hydrological cycle in Kumagaya City. With GIS and remote sensing, the most suitable arrangement for the rainfall infiltration inlets was examined. Distribution maps for infiltration, evapotranspiration and groundwater recharge at each town in Kumagaya City was designed from the land cover classification map with hydrological analysis. In these distribution maps, influence of the leak from drinking water and sewage networks was counted to the hydrological cycle.

  • PDF

The Integration of GIS with LANDSAT TM Data for Groundwater Potential Area Mapping(II) - Suitablility Mapping for Groundwater Exploration Using the Geographic Infornation System - (지하수 부존 가능지역 추출을 위한 LANDSAT TM 자료와 GIS의 통합(II) - 지하정보시스템에 의한 지하수 부존 가능성의 suitability map 작성 -)

  • 지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.1
    • /
    • pp.45-58
    • /
    • 1992
  • The study is aimed at extraction of the groundwater potential area using the Geographic Information System. The study was to develop techniques of the thematic mapping such as slope map, geologic map, soil map and suitability mapping for grotential area. There thematic maps were combined and weightages were given to produce suitability map for groundwater potential area. The results of this study are as follows. 1) The 78% of cased wells have releation to lineament coincided with the appraisement point of the suitability map. 2) The 9 sites of 18 test sites produced over than 200 m$^3$/day. The with the highest appraisement point of the suitability map. 3) Suitability map is effective to extract groundwater potential area which can not be extracted from the remotely sensed data. The developed suitability mapping techniques are expected to do as an important tool for exploration and development of the newable and unnewable resources such as groundwater, petroleum etc.

Groundwater resources potential mapping and its verification using GIS and remote sensing in Pohang city (GIS 및 원격탐사를 이용한 포항시 지하수 잠재가능성도 작성 및 검증)

  • Lee Sa-Ro;Kim Yong-Sung;Won Jong-Ho
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.115-128
    • /
    • 2006
  • The aim of the study is to select and verify for development of groundwater resources using Geographic Information System(GIS). The water balance, land cover, forest, soil, elevation, slope, hydrogeology and lineament were analyzed. Using GIS, relationship between the data and groundwater yield data was analyzed and the groundwater resources potential map was made for selecting suitable area for groundwater development. Then groundwater resource potential map was verified using groundwater yield data. The verified result showed the good agreement between the potential map and groundwater yield data. The potential map can be used for groundwater management which is related to groundwater development.

  • PDF

Search of submarine discharge locations with multi-temporal thermal infrared images and ground radar surveys

  • Onishi K.;Sairaiji M.;Rokugawa S.;Tokunaga T.;Sakuno Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.685-688
    • /
    • 2004
  • Fresh water discharge from the sea floor strongly affects a coastal ecology and the diffusion of contaminants. Much fresh water discharge has been found in the edge of Kurobe alluvial fan, in which annual rainfall is over 4000mm and there is abundant groundwater. However, it is difficult to find the groundwater discharge, thus the search of possible areas with some remote sensing tools is required. Because the temperature of the discharge point is relatively low compared with the surrounding sea water surfaces, there is a possibility to detect the area as an irregular zone of thermal infrared images. Two anomalous temperature zones, which have no surface streams from rivers, are detected by ASTER thermal-infrared images. One of them was verified as the groundwater discharge point by dives. In addition, the distribution of water table under the land side of the two areas is also detected as irregular zones by a ground-penetrating radar

  • PDF

Agro-Ecosystem Informatics for Rational Crop and Field Management - Remote Sensing, GIS and Modeling -

  • INOUE Yoshio
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.22-46
    • /
    • 2005
  • Spatial and timely information on crop and filed conditions is one of the most important basics for rational and efficient planning and management in agriculture. Remote sensing, GIS, and modeling are powerful tools for such applications. This paper presents an overview of the state of the art in remote sensing of crop and field conditions with some case studies. It is also shown that a synergistic linkage between process-based models and remote sensing signatures enables us to estimate the multiple crop/ecosystem variables at a dynamic mode. Remotely sensed information can greatly reduce the uncertainty of simulation models by compensating for insufficient availability of data or parameters. This synergistic approach allows the effective use of infrequent and multi-source remote sensing data for estimating important ecosystem variables such as biomass growth and ecosystem $CO_2$ flux. This paper also shows a geo-spatial information system that enables us to integrate, search, extract, process, transform, and calculate any part of the data based on ID#, attributes, and/or by river-basin boundary, administrative boundary, or boundaries of arbitrary shape/size all over Japan. A case study using the system demonstrates that the nitrogen load from fertilizer was closely related to nitrate concentration of groundwater. The combined use of remote sensing, GIS and modeling would have great potential for various agro-ecosystem applications.

  • PDF

Subsidence Due to Groundwater Withdrawal in Kathmandu Basin Detected by Time-series PS-InSAR Analysis

  • Krishnan, P.V.Suresh;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.703-708
    • /
    • 2018
  • In recent years, subsidence due to excessive groundwater withdrawal is a major problem in the Kathmandu Basin. In addition, on 25 April 2015, the basin experienced large crustal displacements caused by Mw 7.8 Gorkha earthquake. In this study, we applied StaMPS- Persistent Scatterer InSAR (StaMPS PS-InSAR) technique to estimate the spatio-temporal displacements in the basin after the mainshock. 34 Sentinel-1 C-band SAR data are used for measuring subsidence velocity during 2015-2017. We found the maximum subsidence velocity of about 9.02 cm/year and mean subsidence rate of about 8.06 cm/year in the line of sight direction, respectively, in the central part of the basin.

Status of Groundwater Potential Mapping Research Using GIS and Machine Learning (GIS와 기계학습을 이용한 지하수 가능성도 작성 연구 현황)

  • Lee, Saro;Fetemeh, Rezaie
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1277-1290
    • /
    • 2020
  • Water resources which is formed of surface and groundwater, are considered as one of the pivotal natural resources worldwide. Since last century, the rapid population growth as well as accelerated industrialization and explosive urbanization lead to boost demand for groundwater for domestic, industrial and agricultural use. In fact, better management of groundwater can play crucial role in sustainable development; therefore, determining accurate location of groundwater based groundwater potential mapping is indispensable. In recent years, integration of machine learning techniques, Geographical Information System (GIS) and Remote Sensing (RS) are popular and effective methods employed for groundwater potential mapping. For determining the status of the integrated approach, a systematic review of 94 directly relevant papers were carried out over the six previous years (2015-2020). According to the literature review, the number of studies published annually increased rapidly over time. The total study area spanned 15 countries, and 85.1% of studies focused on Iran, India, China, South Korea, and Iraq. 20 variables were found to be frequently involved in groundwater potential investigations, of which 9 factors are almost always present namely slope, lithology (geology), land use/land cover (LU/LC), drainage/river density, altitude (elevation), topographic wetness index (TWI), distance from river, rainfall, and aspect. The data integration was carried random forest, support vector machine and boost regression tree among the machine learning techniques. Our study shows that for optimal results, groundwater mapping must be used as a tool to complement field work, rather than a low-cost substitute. Consequently, more study should be conducted to enhance the generalization and precision of groundwater potential map.

A Study on the Extraction of Groundwater Potential Area Utilizing the Remotely Sensed Data

  • Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.109-120
    • /
    • 1994
  • The study is aimed at the extraction of the groundwater potential areas utilizing the remotely sensed data from satellites. The results of the study are summarized as follows. Analyses of the existing operational wells for groundwater supply indicate that 81% of them are related with lineaments and 51% of them are located at the intersections of lineameters. Thus the features of lineaments are considered to be one of the most important parameters to extract a high potertial area of groundwater. Taking into acount features of lineament, high potential points were extracted from Landsat TM data based on the theory developed in this research, then verifications were made through actual drilling. The result of verification indicates that 9 points produces more 200 cubic meter/day which is the amount required from economical point of view for an operational use. Since the actual boring was not made on the recommended points for 4 points due to the difficulty of access to the exact points and of the approval for boring, they did not yield enough output. The result might have been improved if the exact points were bored and if the boring bad been made deeper, since the maximum depth of boring was limited to 62 meters.

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.