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Abstract: Spatial and timely information on crop and filed conditions is one of the most important basics
for rational and efficient planning and management in agriculture. Remote sensing, GIS, and modeling are
powerful tools for such applications. This paper presents an overview of the state of the art in remote
sensing of crop and field conditions with some case studies. It is also shown that a synergistic linkage
between process-based models and remote sensing signatures enables us to estimate the multiple
crop/ecosystem variables at a dynamic mode. Remotely sensed information can greatly reduce the
uncertainty of simulation models by compensating for insufficient availability of data or parameters. This
synergistic approach allows the effective use of infrequent and multi-source remote sensing data for
estimating important ecosystem variables such as biomass growth and ecosystem CO, flux. This paper
also shows a geo-spatial information system that enables us to integrate, search, extract, process,
transform, and calculate any part of the data based on ID#, attributes, and/or by river-basin boundary,
administrative boundary, or boundaries of arbitrary shape/size all over Japan. A case study using the
system demonstrates that the nitrogen load from fertilizer was closely related to nitrate concentration of
groundwater. The combined use of remote sensing, GIS and modeling would have great potential for

various agro-ecosystem applications.
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1. Introduction — background & research needs —

The efficient use of resources such as soil, water, energy, and agro-chemicals is one of the most

important aspects of precision agriculture. This is the basis for cost reduction and less negative impact on
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environment. Therefore, it is often required to understand and assess the environmental impacts at
landscape, catchment-area, or regional scales.

Remote sensing is the powerful tool for acquisition of such information in a wide range of applications
(Moran and Inoue, 1997). Bio-physical signatures over the broad electromagnetic domains (optical,
thermal and microwave) can be detected on remote/non-destructive, wide-area, and real-time basis.
Within-field or between-field differences can be assessed efficiently by remote sensing. On the other hand
process-based modeling allows dynamic assessment/prediction of crop and field conditions. Nevertheless,
both methods have some inherent limitations, respectively (Inoue and Olioso, 2004a). Thus, this paper
reviews and analyze the state of the art in remote sensing of crop and field conditions, and to investigate
the potential of a new approach which combine remote sensing and process-based modeling.

Another useful tool is GIS (geographical information system). Since every biece of farmland has
different topographic, climatic, soil, and management conditions, and these properties affect the crop
productivity and environmental impacts of agriculture at larger scales. Thus, a generic information system
should be crucial for systematic integration and analysis of geo-spatial data and information at a fine scale
of farmland. In this paper, a case study on development and application of geo-spatial information system

is demonstrated.
2. Remote Sensing of Crop and Field — an overview —

2.1 Sensors and platforms for precision farming

A range of platforms and sensor systems can be used for remote sensing of crop/field for precision
farming; optical, thermal, and microwave sensors are available for space-borne, airborne, and ground-
based platforms (see review by Moran and Inoue, 1997; Inoue, 1998; Inoue et al., 2000; Inoue 2003; Inoue
and Olioso, 2004a). The application of remote sensing to precision crop management involves at least
three important requirements: (1) electromagnetic features, (2) spatial resolution, and (3) temporal
resolution (Moran and Inoue, 1997). Hyperspectral signature may be useful for detection of biotic and
abiotic plant stresses (Inoue, 1998). One of the most attractive aspects of active microwave signature is to
permeate through clouds. Thermal signature is useful especially for detection of water stress and for
calculation of energy balance. Spatial resolution is important in applications in precision crop
management; 1m resolution on the ground is optimal for various purposes which is already available from
some satellite sensors. High temporal resolution such as 1 week is also required for growth monitoring
although cloudy conditions often hamper the observation by optical sensors. Details can be found in the

above review papers.
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2.2 Relationships useful for diagnosis and prediction of crop and field conditions

Figure 1 depicts the hyper-spectra for various targets in agro-ecosystems. Hereafter, spectral ranges in
visible, near-infrared, and shortwave-infrared are expressed as VIS, NIR and SWIR, respectively; the
spectral reflectance at ### nm is expressed as p### (e.g., spectral reflectance at 850 nm is p850). A wide
range of soil, crop parameters can be estimated from remotely sensed information. In this paper, due to
page limitation, some of results mainly from our research studies are presented. More detailed information

can be found in reviews by Moran and Inoue (1997), Inoue (2003), and Inoue and Olioso (2004a).

2.2.1 Biomass, leaf area index LAI, and Yield

Broad band signatures in VIS and NIR are useful for estimating green biomass or LAI, and a
considerable number of spectral indices such as NDVI (= [pnir-Prep)/[PnirtPren]; Pnir @and prep are
reflectance at near-infrared and red wavelengths) have been proposed (see a review by Inoue and Olioso,
2004a) Recently, we also found that microwave backscattering signatures in L-band (1.26 GHz) and C
band (5.75 GHz) are promising in estimation of biomass and LAI, respectively (Figure 2; Inoue et al.,
2002). A number of attempts have been made to correlate remotely sensed signatures with the final yield
of various crops (e.g., wheat, maize, rice, soybean, barley, sugar beet). The NDVI at critical growth stages
such as heading, and the temporal integral of such indices over specific periods, have been correlated to
final yield (e.g., Rasmussen, 1992). These are all based on the correlation between above-ground biomass
at some stage and final yield. Since senescence during maturity and the duration of the grain filling period
are also related to changes in NDVI, the index is correlated with the final yield (e.g., Potdar, 1993). Grain
yield at maturity can be estimated by spectral reflectance within the 500~ to 700-nm and 900- to 1300-nm
wavelength regions (Shibayama et al., 1991), and at 1100 and 1650 nm (Inoue et al., 1998). Remotely
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Fig.1. Typical spectra for agro-ecosystem surfaces, and for paddy fields at
different conditions. (Inoue et al., 2001)
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Fig. 2. Comparison between canopy variables measured by destructive sampling and estimated by
backscattering coefficients in different frequency; a) Biomass, b) LAl c) stem density, and d)
weight of heads, respectively. (Inoue et al., 2002)

sensed surface temperature was also related to yield using stress-degree-days (Idso et al., 1980). Since leaf
temperature is closely related to water stress, the sum of the canopy-air temperature differences (stress-
degree-days) during the grain filling period is correlated with the final yield (Seguin et al., 1989). Other
data that are useful for yield forecasting can be obtained from microwave backscattering signatures,
because the C-band (5 GHz) and L-band (1.5 GHz) are related to biomass, as noted in the previous section.
The close relation found between weight of rice heads and backscattering coefficients in the Ka-band (35
GHz) and the Ku-band (16 GHz) may provide useful information about the growth of heads during the

grain filling period (Inoue et al., 2002). In general, these correlations should be used very carefully
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because the applicability of regression models is strongly affected by the range of the data set, even when
the correlations are real correlations based on mechanistic foundations. These regression approaches are
usually simple in terms of both model structure and data requirements, but model parameters must be

determined for each crop, variety, location, and other variables.

2.2.2 Chlorophyll, Nitrogen and Water Contents

These three variables can be estimated from hyperspectral measurements over VIS, NIR and SWIR
wavelengths. Figure 3 shows that chlorophyll concentration in leaves of rice canopies can be estimated
using a few hyper spectral bands in visible and NIR wavelengths, which was obtained by a hyperspectral
imager developed by the authors (Inoue and Pefiuelas, 2001). A simple index p830/p550 is also useful for
estimating nitrogen concentration of rice canopy with the similar mass of leaves (Figure 4), which is
useful for diagnosis of maturity and protein content of grain. Total amount of canopy nitrogen can be
estimated by using 4 broad bands in VIS, NIR and SWIR bands (Figure 6), while above indices for
concentrations are not very useful. Hyperspectral reflectance at NIR and SWIR is also useful for non-

destructive estimation of leaf water content (Inoue et al., 1993).
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models. (Inoue et al., 2001) canopies (Inoue et al., 1998).

2.2.3 Water stress
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Canopy surface temperature is quite useful for
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pressure deficit (Jackson et al., 1981). The CWSI was
Fig. 10. Physiological status and remotely

sensed surface temperature (d) in stressed
the upper part of Fig. 5) as a number between 0 (no stress) (®) and non-stressed (-:) corn canopies.
Arrows in the figure indicate the timing
of stress-treatment. (Inoue, 1990)

designed to express the degree of water stress (BC/AB in

and 1 (severe stress). The operational applicability of
CWSI has been evidenced by commercial instruments and
several application studies using airborne and space-borne thermal imagery (Moran and Jackson, 1991). A

simplified approach relating canopy temperature together with a vegetation index to canopy transpiration
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(WDI=AC/AB in the lower part of Fig 5) has been proposed for estimating plant stress conditions (Inoue

and Moran, 1997; Moran et al, 1994).
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Fig. 5. Schematic presentation of stress
indices based on thermal remote
sensing. (Moran & Inoue, 1994).

system developed by the authors (Inoue et al.,
2001). Another interesting approach involves
the use of hyperspectral signatures to estimate photosynthetic activity directly; one such signature is
chlorophyll fluorescence, which can be remotely induced and detected (Cecchi et al., 1994; Méthy et al ,
1994). Chlorophyl! fluorescence in the red and near-infrared regions may be a good indicator of the
capacity of photosynthetic electron transport, because fluorescence is emitted mainly from photosystem I1
(PSI) Yet another approach is to use the spectral reflectance at a wavelength of approximately 530 nm,
which is related to both photosynthetic efficiency (photosynthesis/incident photon flux density) and the
relative increase of zeaxanthin in the xanthophylls cycle pool (Filella et al., 1996; Pefiuelas and Filella,
1998) A high correlation between the normalized reflectance at 531 nm and CO, uptake has been found at

the canopy scale (Pefiuelas and Inoue, 2000). Figure 8 indicates that the LUE can be estimated from p531
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and 2200 nm were used. (Inoue et al., 1998)
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(Inoue, 2005)
and p570 nm (Pefiuelas and Inoue, 2000). These relationships can be used for spatial monitoring of crop

productivity.
A widely used approach, often using AVHRR data, considers the 'simplified relationship' which was

proposed by Seguin and Itier (1983) to relate linearly evapotranspiration to the difference between surface
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temperature and air temperature. An even simpler type of relation was also derived by Di Bella et al.
(2000) over the Argentina Pampa that avoids the use of air temperature. Other combinations of remotely

sensed information and process-based modeling are discussed in detail in the next section.

2.2.5 Soil properties and water condition
Radiometric measurements of bare soils are useful to directly extract information about soil surface

conditions. Surface reflectance information has been related directly to variability in loess thickness
(Milfred and Kiefer, 1976), soil organic matter (Robert, 1993; Zheng and Schreier, 1988), soil calcium
carbonate content (Leone et al., 1995), soil nutrients (particularly those associated with soil texture and
drainage) (Thompson and Robert, 1995), iron oxide content (Coleman and Montgomery, 1987), and soil
texture classes (with similar responses to water and fertilizer) (King et al., 1995). Soil thermal information
has been linked with variations in soil moisture content (Idso et al., 1975) and soil compaction (Burrough
et al., 1985). Despite the relations among soil reflectance and soil properties, remotely sensed images are
not currently being used to map soil characteristics on a routine basis (with the exception of high and
medium altitude aerial photographs that serve as base maps in county level soil surveys). This is because
the reflectance characteristics of the desired soil properties (e.g., organic matter, texture, iron content) are
often confused by variability in soil moisture content, surface roughness, climate factors, solar zenith
angle, and view angle. This is particularly true for mapping agricultural soils with varying cultivation
practices. In fact, Leek and Solberg (1995) showed that images of surface reflectance acquired during
times of greatest plowing activity could be used to map tillage and assist in erosion control.

Salisbury and D'Aria (1992) reported that thermal infrared band ratios from the upcoming EOS
ASTER sensor (range 8-14 pm, resolution 90 m) could be used to discriminate such soil properties as
particle size, soil moisture, soil organic content, and the presence of abundant minerals other than quartz.
Verma et al. (1994) found that better results (particularly for discrimination of the similar reflectance
properties of salt-affected soils and normal sandy soils) could be obtained by combining reflectance and
temperature information. Wiegand et al. (1986) have used soil and plant samples, videography or SPOT
HRYV spectral observations, and unsupervised classification to map soil salinity and yield at salt-affected
cropped fields. For both crop and soil mapping, remotely sensed images should also be considered for
revision of maps of "seasonally-stable" management units. By comparing such maps acquired at optimum
times within the season (when soils are bare or when crops cover or phenology is optimum), it may be
possible to revise management units midseason in response to unexpected changes. The revision process
could be as simple as splaying the remote sensing data as a backdrop to a vector map of management units

within a GIS and visually assessing differences (Chagarlamudi and Plunkett, 1993). Multispectral images
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obtained when soils are bare could be used to map soil types relevant to precision farming. Maps of
spectral variability (obtained under conditions of either bare soil or full crop cover) may prove useful for
revision of maps of management units.

The backscattering signals of SAR sensors in long wave-lengths (e.g., C-band at 5.7 cm or L-band at
21 cm) have been used to map soil moisture content of agricultural fields based on a simple linear
correlation. This direct relation can be strong for bare soil conditions, but there is considerable scatter
when fields of variable crop biomass are included in the regression (Benallegue et al., 1994). Thus, most
recent works in mapping within-field soil moisture conditions are based on the use of dual frequency SAR
where the combination of long and short (e.g., Ku-band at 2 cm or X-band at 3 cm) wavelengths is used to
determine the vegetation-induced attenuation of the long-wavelength signal to improve estimates of soil
moisture (Taconet et al., 1994; Prevot et al., 1993; Paloscia et al., 1993; Moran et al., 1997a). The SAR
signal is sensitive not only to soil moisture but also to surface roughness (like that associated with
differentially titled agricultural soils) and topography. Engman and Chauhan (1995) suggested that the
best application of existing, unifrequency SAR sensors may be for monitoring the temporal change of soil
moisture to minimize the influence of variability in roughness, vegetation and topography. Others have
suggested that SAR radiative transfer models could be used, with ancillary data provided by remote
sensing of non-SAR wavelengths or other sources, to reduce the surface-induced "noise" in the SAR

signal and improve soil moisture estimates (Moran et al., 1997b; Wigneron et al., 1995).

2.2.6 Weed
For precision management of pre-planting applications of herbicides, simple information on the

presence or absence of plants can be useful, which are provided by simple remote sensors such as the
tractor-based sensors (e.g., Richardson et al.,1985). In fact, since perennial weeds tend to remain in the
same location each year, there is even the possibility of using the previous year's weed map for pre-plant
control decisions (Brown and Steckler, 1995). Management of post-emergence herbicide applications
poses more difficulty because it requires discrimination between weeds and crops. This is generally
accomplished based on the differences in the visible/NIR spectral signatures of crops and specific weeds
(Brown et al., 1994) or by acquiring images at specific times during the season when weed coloring is
particularly distinctive (i.e., during flowering). An example of an integrated system for management of
weeds with remote sensing input was presented by Brown and Steckler (1995). Their system combined
image-derived weed maps with a GlS-based decision model to determine optimum herbicide mix and

application rates for no-till corn and resulted in reductions of herbicide use by more than 40%.
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2.2.7 Disease and insect infestation
Remote sensing has some potential for detecting and identifying crop diseases. Toler et al. (1981) used

false color IR photography to detect Phymatotrichum root rot of cotton and wheat stem rust. In fungal and
mildew infected leaves, changes in remotely sensed reflectance have been detected before symptoms were
visible to the human eye (Malthus and Madeira, 1993; Lorenzen and Jensen, 1989). Though wide visible
and near-infrared bands may be helpful for discriminating healthy and diseased crops (due to changes in
foliage density, leaf area, leaf angles, or canopy structure), the best results for identifying diseases were
obtained with hyperspectral information in the visible and near-infrared spectrum. Discrimination of
diseases may be possible with knowledge of the physiological effect of the disease on leaf and canopy
elements. For example, necrotic diseases can cause a darkening of leaves in the visible spectrum and a cell
collapse that would decrease near-infrared reflectance. Chlorosis inducing diseases (mildews and some
virus) cause marked changes in the visible reflectance (similar to N deficiency) and other diseases may be
detected by their effects on canopy geometry (wilting or decreases in LAI). As discussed later,
hyperspectral data in the visible and NIR wavelengths have potential for discrimination of crop stress
caused by N deficiency, crop‘ disease, water stress, chlorosis, and more. Carter (1994) reported that narrow
wavebands derived from hyperspectral data could be used to discriminate the cause of plant stress in six
plant species due to eight stress agents: competition, herbicide, pathogen, ozone, mychorrhizae,
senescence, and dehydration.

Few studies have been reported on the use of remote sensing for directly assessing insect infestation
Indirectly, insect damage to plants has been detected through remote sensing of insect habitat (Hugh-Jones
et al., 1992), growth and yield of plants (Vogelmann and Rock, 1989), or changes in plant chemistry.
Penuelas et al. (1995) found that increasing infestations of mites in apple trees caused a decrease in the
leaf chlorophyll concentration and an increase in the carotenoid/chlorophyll a ratio. These chemical
changes were detected by hyperspectral reflectance measurements. It is needed to explore useful
algorithms for discriminating different affecting agents.

Since the canopy surface temperature is closely linked with transpiration rate (Inoue, 1990; Inoue et al.,
1994), disease can be detected (Nilsson, 1991; Yamamoto et al., 1995) or predicted (Chiwaki et al., 2005)

using infrared thermal imagery.

3. Synergy of remote sensing and modeling — a new approach for dynamic and systematic
assessment/prediction of crop growth —

3.1 Background
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The advantage of remote sensing is that signatures over broad electromagnetic domains can be
detected on remote/non-destructive, wide-area, or real-time bases, while the issue surrounding is that
measurements are usually instantaneous, directional and infrequent, and must be converted to bio-
physically meaningful variables. Conversely, the advantage of process modeling is that numerical models
can take account of multiple variables, and can provide dynamic simulations as well as predictions under
imaginary situations, while the issue is that experimental determination of model parameters and model
validation are not easy, and that it is tedious or impossible to gather necessary input data. Hence, one of
the most promising approaches for effective monitoring and accurate prediction of plant production

processes is the synergy of remote sensing and process models, which can reinforce each other.

3.2 Case studies in the synergy of remote sensing and process-based models

Here, four case studies are presented to show different types of synergy between process-based models
and remotely sensed signatures in optical, thermal, and microwave wavelength domains. The remotely
sensed signatures microwave and thermal domains are used as input to the process-based models in the

former two cases, and used for dynamic parameterization of process-based models in the latter cases.

3.2.1 Simple scattering model linked with microwave backscattering signatures

Since the radar backscatter is not a function of one or two parameters but rather depends upon a wide
range of parameters of the vegetation, soil, topography and the radar sensor itself, the physically-based
modeling approach would be essential for retrieving plant variables from backscatter signature under a
wide range of plant conditions and sensor configurations. Observations from field experiment should also
be understood in generalized manner for more universal applications of results. The backscatter
coefficiento0 for the whole canopy has been simply expressed by the water cloud model (Attema and
Ulaby, 1978), and proved useful in a wide range of crop types and conditions (e.g., Prevot, 1993; Moran et
al, 1998).

o’ =10log{A -V, -cos@(1—exp[-2B- V, /cos8]) + 6 ’sc exp[-2B- V,/cosO]}

where, ¢’ = Backscattering coefficient in power units (m”m™) for the canopy; @ = the incident angle; V,
and V, = the descriptors of the canopy; A and B = coefficients that depend on canopy type; 6’ = the
scattering coefficient of the canopy background. For paddy rice, we can assume that the ¢ is constant,
and presume that both canopy descriptors can be represented by LAI or total fresh weight (TFW); i.e.,
V,=V,=LAl or V=V,=TFW. Figure !1 shows the values of r* as an indicator of model fitting in the two
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3.2.2 Remote and real-time monitoring of canopy transpiration using a process-based model
with remotely-sensed canopy temperatures

The method is based on the energy balance model of a plant canopy, which uses the net radiation
absorbed by the canopy and the remotely sensed canopy temperature as key inputs. Measurements were
made on drought-stressed, waterlogged, and periodically-irrigated soybean canopies. Canopy transpiration
values used for verification of the remote method were calculated from the mean transpiration rates per
unit leaf area measured by sap flow gauges. On the basis of the energy balance (Monteith, 1990), canopy
transpiration can be expressed as : '

Tr. = [ Rnc - pCp (t - t) gan ] /A
where Tr, is the canopy transpiration rate, Rn, is the net radiation absorbed by the canopy, p is the density
of air, Cp is the heat capacity of air, t, and t, are the canopy and air temperatures, gay, is the aerodynamic
conductance for heat, and A is the latent heat of vaporization.

Canopy transpiration values derived from the remote method are compared with those by the stem flow
gauge method from three different aspects: 1) diurnal time course for a particular canopy, 2) one-to-one
comparison of ten-minute mean values for all soil water conditions, and 3) daily total values for all soil

and meteorological conditions. Figure 12 shows the diurnal course of canopy transpiration values
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estimated by the two methods. A good agreement was obtained between the two estimates under both
cloudy and clear sky conditions for the whole day. There was a good correlation between the direct and
remotely-estimated canopy transpiration rates irrespective of the extreme soil water conditions. Similar
good correlation was also found in all other days. Comparison of the two methods was made also at a
daily basis (Fig.13), since daily total values of canopy transpiration would be practical for irrigation
management and ecological studies on natural vegetation. Estimates for all non-stressed and severely-
stressed canopies under various climatic conditions were well correlated with each other, the regression
line being very close to the 1:1 line. The remote method based on the measurements of canopy surface
temperature proved to give the reasonable estimates of canopy transpiration and conductance under a wide
range of soil water and micrometeorological conditions. The method will allow continuous measurements
of these canopy parameters in the open field with neither plant-sampling nor disturbing the

micrometeorological environment of the canopy.
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3.2.3 Dynamic prediction of rice growth based on synergy between remotely-sensed reflectance
signatures and a growth model

Spectral reflectance of differentially-managed rice canopies was measured over an entire growing
season, and linked with a simple growth model (Inoue et al., 1998). The fraction of absorbed
photosynthetically active radiation (fAPAR), which is often used as a key variable in simple process
models, was well correlated with spectral vegetation indices. VIs, such as NDVI and SAVI, were derived
from the ratio of reflectance at two wavelengths (R660nm and R830nm) and a new VI, termed the
normalized difference ND[R1100nm, R660nm], was derived from the difference of R1100nm and
R660nm divided by their sum. The use of R1100nm and R1650nm with R660nm and R830nm in multiple
regression significantly improved the prediction accuracy of fAPAR (Fig. 6).

The model used here was a simple process model which simulated the growth and yield of irrigated
rice based on weather data (Horie, 1985). Dry matter production was expressed as a function of absorbed
solar radiation by a canopy and the radiation use efficiency (RUE; the conversion efficiency of radiation
to plant dry mass). The absorbed radiation was determined by the incident solar radiation and fAPAR

which was a function of LAIL Finally, the

grain yield was estimated as a specific 6 ¢ —
proportion (harvest index) of the total [ @ Meas

dry matter. The model required five > _____E:E;JFRS ., E
inittal inputs (date of transplanting, 4 - H -
global coordinates of the location, and '::‘ 3 _ e%0 ™ _
initial values of dry matter DMi, leaf ¢ oo
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(daily values of incident solar radiation .
and mean air temperature). Because of 0146 I i60 .1 éO I 260 Jzéo l 2:10 ' 2é0 ‘ I280
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easily applied where such common  Fig 14 Prediction of LAI based on the real-time
weather data are available (Horie, 1993). calibration system with remotely sensed

. . fAPAR. Abbreviations Meas, Sim, and
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information  (critical daylength for
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efficiency, extinction coefficient, asymptotic value of LAl when temperature is non-limiting, maximum
harvest index. critical temperature for cooling damage, etc.) and some empirical constants for each
equation. All parameters were determined for each variety and location based on a large number of field
experiments and destructive sampling. The most sensitive crop parameters were found to be those related
to phenology, radiation use efficiency, and two initial values (DVIi and LAli), so that careful specification
was needed for the values of those parameters.

A real-time recalibrgtion module based on a simplex algorithm was developed and proved effective in
linking the remotely-sensed fAPAR with a simple model. This approach was also useful for inferring the
physiological parameters such as radiation use efficiency for each rice canopy without destructive
sampling  The re-parameterization and/or re-initialization with remotely-sensed information were
demonstrated to be a practical and effective approach, especially for operational purposes. The
performance of the real-time calibration module was tested using remotely sensed fAPAR values.
Prediction results by the simulation model with and without remote sensing inputs are shown in Fig. 14. In
this example, remotely sensed data on two dates were used for recalibration. The approach of within-
season calibration was undoubtedly effective since a model can be modified to fit reality with the data
from the real object no matter what kind of data are used (e.g., estimated by destructive sampling or from
remote sensing). With increasing number of remote sensing data used, the simulation curve approached to
the reality. The use of fAPAR may be somewhat unique for remote sensing because fAPAR is more
closely linked with remotely sensed spectral reflectance than such as LAI and biomass, and a direct
measurement of fAPAR is not easy, especially during the ripening period (Inoue and Iwasaki, 1991).
Another useful aspect of the within-season calibration of a model with remotely sensed data is that it can
provide the realistic estimates of physiological parameters incorporated in the model without any direct
measurements. These physiological parameters may be used for field-to-field comparison of productivity
or variety-screening. The combination of remotely sensed data and a simple growth model may be useful
in improving the accuracy of model prediction and in providing physiological parameters without tedious

sampling.

3.2.4 Predicting dynamic change of canopy CO; flux based on synergy of remotely sensed data
and a SVAT Model

The objective of this study was to investigate the potential of synergy between
biophysical/ecophysiological models and remote sensing for the dynamic estimation of biomass and net

ecosystem exchange of CO, (NEEco;). We obtained a long-term dataset of micrometeorological, plant,
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and remote sensing measurements over well-managed uniform agricultural fields (Inoue et al., 2004). The
NEEcq, was measured using the eddy covariance method (ECM), and remote sensing signatures were
obtained using optical and thermal sensors. A soil-vegetation-atmosphere transfer (SVAT) model (Calvet

et al., 1998) was linked with remotely sensed signatures for the dynamic simulation of CO, and water

fluxes, as well as biomass, photosynthesis, surface
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using an 8-year dataset, and the performance of the model was excellent when all necessary input data and
parameters were available. However, simulations using the model alone were subject to great uncertainty
when some of the important data/parameters such as soil water content were unavailable. Dynamic
parameterization of the SVAT model using remotely sensed information (Fig. 15) allows us to infer the
target parameters within the model or unknown inputs for the model thorough iterative optimization
procedures. A robust relationship between the leaf area index (LAI) and the normalized difference
vegetation index (NDVI) was derived and used for dynamic parameterization (Fig. 16).

Our results showed that simulated biomass and NEEqy, agreed well with those measured using
destructive sampling and the ECM, respectively. Remotely sensed information can greatly reduce the
uncertainty of simulation models by compensating for insufficient availability of data or parameters. This
synergistic approach allows the effective use of infrequent and multi-source remote sensing data for

estimating important ecosystem variables such as biomass growth and ecosystem CO, flux (Fig. 17).
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4. Geo-spatial integration and analysis of static and dynamic information on agro-
ecosystems

The objective of this study was to develop a generic geo-spatial simulator for a range of agro-
environmental applications. The system was applied to assessment of the fertilized nitrogen to the quality
of groundwater.

In general, all GISs have four basic components: (1) a data input subsystem to integrate spatial and
descriptive data from a wide range of data sources such as maps, remotely sensed images, and historical
archives; (2) a database management subsystem to handle, process, and organize the database; (3) an
analyzing subsystem to extract useful information from the data layers; and (4) an output subsystem to
present results as maps and documents (Coulson et al., 1991). The input system can store spatial data as
raster or vector layers. The analyzing system can execute numerical processing including regressions,
correlations, and simulations. The output system often provides visualized products such as 3-D graphics

or animations, which allow easy interpretation for scientists, planners, and policy makers.

4.1 The structure and performance of the Geo-Spatial Agro-ecosystem Simulator

Taking account of the above functions, we designed a generic geo-information system for agro-
ecosystems that cover the entire farmland in Japan (GSAS). Agricuitural farmlands all over Japan have
been expressed by farmland parcels with a size of a few haq, the total number of which is about 5 millions.
Figure 1 depicts the structure of the GSAS. Data integrated in the system include 1) general background
map elements such as traffic networks, city boundary, and facilities, etc., 2) topographic data such as
elevation, slope, aspect, global position, and soil property, 3) meteorological data such as precipitation,
temperature, and snow, 4) information on land types, shape, farm road, irrigation and drainage conditions,
and land reformation, 5) accurate acreages of paddy, upland, and the parcel. These data are from different
sources including those from Ministry of Agriculture, Forestry and Fisheries. Data from national and local
statistics on cropping and land-use, etc. are also superimposed into the system. Data from satellite imagery
i1s also taken into the system and analyzed together with the other data. Any of point measurements can be
installed with position data onto the system. Figure 19 depicts an overview of the data system with an

example for the central Japan.
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One of the most unique points of GSAS is that a small size of farmland is used as the basic unit for
integration and other data processing Each parcel is defined basically as a piece of farmland of about 2 Aa
The borderline polygon of each parcel is derived by tracing the border of one or a set of a few individual
farmlands. Therefore, all parcels consist of only agricultural land, excluding any of the other land-use such

as housing area, road, river, and woodland. Each parcel is given with a unique ID number all over Japan.
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Fig. 20. Integration of satellite-derived vegetation conditions at the parcel basis. Note: The
left figure is the multi-layered presentation of spectral images (green/red/near-infrared,
satellite SPOT) superimposed over the polygons of river-basin and farmland parcels.
The right shows the spectral vegetation index calculated and stacked at the parcel basis
in the GSAS. (Inoue at al., 2005)

Another important layer is one for the boundaries of river-basins. The upper part in Fig. 19 shows the
polygons of river-basin boundaries, one of which is zoomed up in the lower left of the figure. The small
polygons within the river-basin boundary are the unit parcels. Attached tables show some of attribute data
for each parcel. Thus, the GSAS enables us to extract any of necessary parcels by ID#, attributes, and/or
by river-basin boundary, administrative boundary, or a boundary of arbitrary shape/ size on the display
over the entire Japan.

Figure 20 depicts the use of satellite image with the GSAS. This example shows the processing and
installation of vegetation index NDVI (= [pnir-pPren)/[PnirtPreD]; Pair @nd prep are reflectance at near-
infrared and red wavelengths) onto the system. The upper figure shows the multi-layered images of green,
red and near-infrared bands from the satellite SPOT with the polygons of river-basin boundary. The NDV1
was calculated from those spectral images at the pixel basis (25 m), and average and variability (e.g.,
standard deviation within each parcel) of NDVI values were stored as attributes of each parcel. The NDVL,
a kind of standard information from satellite imagery, is a useful index for estimating the amount of green
vegetation. Any of satellite image data in optical, thermal or microwave wavelengths can be stacked in the
similar way.

The GSAS is not only for integration of data, but for searching, extracting, processing, transforming,
and calculating any part of the data. Thus, the system is a powerful tool for up- and down-scaling,
simulation, and assessment of agro-ecosystem variables. Results from such calculations are also stacked

back into the data system, so that the system works as a self-reproductive reactor.
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4.2 A case study for geo-spatial assessment of groundwater quality as affected by fertilizing

Losses of nutrients from agricultural land can pollute both ground and surface waters and the
atmosphere. Therefore, it is strongly required to minimize the impact of agricultural management on
environmental pollution (MAFF, 2000). The environmental criterion for the nitrate in groundwater is 10
ppm, but there are a number of evidences that the nitrate concentration greatly exceeds the criterion in
many regions in Japan (Nishio, 2005). Besides, it has been pointed that the pollution seems to be closely
related to amount of fertilizers applied in the regions (Kumazawa, 1999; Nishio, 2001). Thus, in this case
study, we focused on the impact of the fertilizer on nitrate (NO;) in the groundwater in Ibaraki prefecture.
The data of cropping area for all crop species in 1985 and 2000 were taken into the GSAS. The sum of
nitrogen that is possibly left in the cropped-land and leaching into the groundwater was integrated at the
town scale since the data of nitrate measurements at surveyed wells were publicized only as a statistical

summary at the town scale, i.e., percentage number of wells with exceeding concentration of nitrate in
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(Inoue at al., 2005)
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each town (Shimada et al., 1989). The nitrogen balance was estimated from the amount of nitrogen
applied and used by each crop species using the estimates by Nishio (2001).

Figure 21 shows the relationship between nitrogen load from fertilizers and percentage number of
wells with exceeding concentration of nitrate. The nitrogen load (x-axis) was estimated by GSAS while
the percentage of wells with excess nitrate concentration (y-axis) was derived from chemical analysis of
well water in 1988. It is obvious that these two are highly correlated (r*=0.71), which strongly indicate the
impact of nitrogen load from fertilizer on the groundwater quality. The “simulation in 2000” indicates the
percentage number of wells with excess nitrate concentration in 2000 based on simulation using the above
regression model and the cropping data in 2000. Results suggest that there are still a number of areas with
high risk of excess mitrate concentration in 2000. This simulation was done assuming the unit load for
each crop species did not have changed from 1988 to 2000, but less use of fertilizer and/or improvement
of application method might have decreased the risk. Nevertheless, considering the effects of such
technical improvement and the range of risk (up to 90%) in Figure 21, the risk may not be much reduced.
More detailed research and assessment are needed using measured data.

On the basis of similar datasets in GSAS, the geo-spatial down-scaling was attempted at the scale of
river-basin. Figure 22 depicts the risk of excess nitrate in well water at the parcel basis, which was
estimated the regression model and data of cropping areas in 1995. Since agricultural statistics are
available only at the administrative boundary (city/town/village) while a river-basin usually covers across
many of them, the GSAS was used for down-scaling of nitrogen input to the parcel scale. This case study
clearly showed that the GSAS allows this type of geo-spatial analysis at various scales anywhere in Japan

The risk of loss by nitrate leaching can be reduced by precise implementation of appropriate
management practices. The rate of nitrogen fertilizer should not be greater than the crop requirement. The
nitrogen use efficiency will be increased by timely application of necessary amount of fertilizer based on
in situ measurements and diggnosis by such as remote sensing (Inoue, 2003). It is also important to take
account of the nitrogen available from the soil organic matter, previous crop residues and organic manures.
Thus, it is recommended to adopt a systematic approach to fertilizer planning. Accurate records of past
fertilizer use and the regular calibration of fertilizer application machinery will increase the accuracy of
fertilizer decisions and application. The information system like the GSAS plays an important role in such

applications.

5. Conclusions
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Within-field or between-field differences can be assessed efficiently by remote sensing. Through the
review and case studies on the potential/limitations of remote sensing, the synergy of remote sensing and
process-based models was suggested to be one the most promising approaches Further experimental and
theoretical studies are needed for both scientific and operational applications of the approach. A geo-
spatial agro-ecosystem simulator has been developed that enables to integrate and analyze a range of geo-
spatial data and information at a basis of farmland parcel. This system has a great potential for various
agro-ecosystem applications such as spatial assessment of crop production, impact of agricultural practices
on environmental quality, as well as planning of landscape management. It is desirable to improve the

structure and function of the system through both experimental and operational case studies.
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