• Title/Summary/Keyword: remote learning

Search Result 554, Processing Time 0.027 seconds

Distance Education in Soft-Switching Inverters

  • Lascu, Dan;Bauer, Pavol;Babaita, Mircea;Lascu, Mihaela;Popescu, Viorel;Popovici, Adrian;Negoitescu, Dan
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.628-634
    • /
    • 2010
  • The paper describes aspects regarding an E-learning approach of resonant ac inverters. The learning process is based on "Learning by Doing" paradigm supported by several learning tools: electronic course materials, interactive simulation, laboratory plants and real experiments accessed by Web Publishing Tools under LabVIEW. Built on LabVIEW and accompanied by a robust, flexible and versatile hardware, the experiment allows a comprehensive study by remote controlling and performing real measurements on the inverters. The study is offered in a gradual manner, according to the Leonardo da Vinci project EDIPE ($\b{E}$-learning $\b{D}$istance $\b{I}$nteractive $\b{P}$ractical $\b{E}$ducation) philosophy: theoretical aspects followed by simulations, while in the end the real experiments are investigated. Studying and experimenting access is opened for 24 hours a day, 7 days a week under the Moodle booking system.

Acceptance and Effectiveness of Distance Learning in Public Education in Saudi Arabia During Covid19 Pandemic: Perspectives from Students, Teachers and Parents

  • Alkinani, Edrees A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.54-65
    • /
    • 2021
  • The movement control order and shutting down educational institution in Saudi Arabia has jeopardized the teaching and learning process. Education was shifted to distance learning in order to avoid any academic loss. In the middle of the Covid-19 crisis, there is a need to assess the full image of e-learning in Saudi Arabia. To investigate student and teachers' perception and acceptance, parents' attitudes and believes about distance education are the main goals of the study. The mix-method research design was employed to collect data. Three surveys were distributed to 100 students and 50 teachers and 50 parents from different educational institutions in Saudi Arabia, while semi-structured interviews were conducted with 10 parents. Random stratified and convenient sampling methods were adopted. Both descriptive and content analysis was conducted using SPSS25.0 and NVIVO software for quantitative and qualitative data accordingly. The findings showed that students are comfortable with remote education and are receiving enough support from schools and instructors but they think online education can't replace conventional face-to-face learning. Moreover, the results showed that teachers are having challenges in preparing online classes because of the development of conducting online classes and the lack of training. However, parents showed negative attitudes regarding the benefits and values of remote education and preferred conventional learning styles in elementary schools. Parents tended to reject and resist distance learning for several reasons: professional knowledge and lack of time to support their young kids in online classes, the shortcomings of e-learning, young children's inadequate self-regulation. Saudi parents are neither trained nor ready to use e-learning. The study provided suggestion and implications for teacher education and policymakers.

A Review on Deep-learning-based Phase Unwrapping Technique for Synthetic Aperture Radar Interferometry (딥러닝 기반 레이더 간섭 위상 언래핑 기술 고찰)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1589-1605
    • /
    • 2022
  • Phase unwrapping is an essential procedure for interferometric synthetic aperture radar techniques. Accordingly, a lot of phase unwrapping methods have been developed. Deep-learning-based unwrapping methods have recently been proposed. In this paper, we reviewed state-of-the-art deep-learning-based unwrapping approaches in terms of 1) the approaches to predicting unwrapped phases, 2) deep learning model structures for phase unwrapping, and 3) training data generation. The research trend of the approaches to predicting unwrapped phases was introduced by categorizing wrap count segmentation, phase jump classification, phase regression, and deep-learning-assisted method. We introduced the case studies of deep learning model structure for phase unwrapping, and model structure optimization to relate the overall phase information. In addition, we summarized the research trend of the training data generation approaches in the views of phase gradient and noise in the main. And the future direction in deep-learning-based phase unwrapping was presented. It is expected that this paper is used as guideline for exploring future direction of deep-learning-based phase unwrapping research in Korea.

The Effects of the Online Learning Using Virtual Reality (VR) Geological Data: Focused on the Geo-Big Data Open Platform (가상현실(VR) 지질자료 개발을 통한 원격수업의 효과 분석: 지오빅데이터 오픈플랫폼 활용을 중심으로)

  • Yoon, Han Do;Kim, Hyoungbum;Kim, Heoungtae
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.47-61
    • /
    • 2022
  • In this study, We developed VR (Virtual Reality) geological resources based on the Geo Big Data of the Big Data platform that provided by the Korea Institute of Geoscience and Mineral Material (KIGAM). So students selected the theme of lessons by using these resources and we operated Remote classes using the materials that developed as to Virtual Reality. Therefore, the geological theme maps provided by the Geo Big Data Open Platform were reconstructed and produced materials were created for Study about Real Korean geological outcrops grounded in Virtual Reality. And Topographic information data was used to produce class materials for Remote classes. Twenty students were selected by Random sampling, and data were collected by conducting a survey including interviews to confirm the change in students' perception of remote classes in virtual reality geological data development and the effect of the classes, so data were analyzed through inductive categorization. The results of this study are as follows. First, students showed positive responses in terms of interest, utilization, and knowledge utilization as taking remote classes for developing geological data in virtual reality geological data. This is the result of showing the adaptability of diverse and flexible learning getting away from a fixed framework by motivating and encouraging students and inducing cooperation for communication. Second, students recognized distance education in the development of Virtual Reality geological data as 'Realistic hands-on learning process', 'Immersive learning process by motivation', and 'Learning process of acquiring knowledge in the field of earth science'.

Aircraft Motion Identification Using Sub-Aperture SAR Image Analysis and Deep Learning

  • Doyoung Lee;Duk-jin Kim;Hwisong Kim;Juyoung Song;Junwoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • With advancements in satellite technology, interest in target detection and identification is increasing quantitatively and qualitatively. Synthetic Aperture Radar(SAR) images, which can be acquired regardless of weather conditions, have been applied to various areas combined with machine learning based detection algorithms. However, conventional studies primarily focused on the detection of stationary targets. In this study, we proposed a method to identify moving targets using an algorithm that integrates sub-aperture SAR images and cosine similarity calculations. Utilizing a transformer-based deep learning target detection model, we extracted the bounding box of each target, designated the area as a region of interest (ROI), estimated the similarity between sub-aperture SAR images, and determined movement based on a predefined similarity threshold. Through the proposed algorithm, the quantitative evaluation of target identification capability enhanced its accuracy compared to when training with the targets with two different classes. It signified the effectiveness of our approach in maintaining accuracy while reliably discerning whether a target is in motion.

Maximum Simplex Volume based Landmark Selection for Isomap (최대 부피 Simplex 기반의 Isomap을 위한 랜드마크 추출)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.509-516
    • /
    • 2013
  • Since traditional linear feature extraction methods are unable to handle nonlinear characteristics often exhibited in hyperspectral imagery, nonlinear feature extraction, also known as manifold learning, is receiving increased attention in hyperspectral remote sensing society as well as other community. A most widely used manifold Isomap is generally promising good results in classification and spectral unmixing tasks, but significantly high computational overhead is problematic, especially for large scale remotely sensed data. A small subset of distinguishing points, referred to as landmarks, is proposed as a solution. This study proposes a new robust and controllable landmark selection method based on the maximum volume of the simplex spanned by landmarks. The experiments are conducted to compare classification accuracies with standard deviation according to sampling methods, the number of landmarks, and processing time. The proposed method could employ both classification accuracy and computational efficiency.

A Comparative Study on Machine Learning Models for Red Tide Detection (적조 탐지를 위한 기계학습 모델 비교 연구)

  • Park, Mi-So;Kim, Na-Kyeong;Kim, Bo-Ram;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1363-1372
    • /
    • 2021
  • Red tide, defined as the major reproduction of harmful birds, has the characteristics of being generated and diffused in a wide area. This has limitations in detection only with the existing investigation method. Therefore, in this study, red tide was detected using a remote sensing technique. In addition, it was intended to increase the accuracy of detection by using optical characteristics, not just the concentration of chlorophyll. Red tide mainly occurs on the southern coast where sea signals are complex, and the main red tide control species on the southern coast is Cochlodinium polykirkoides. Therefore, it was intended to secure objectivity by reflecting features that could not be found depending on the researcher's observation and experience, not limited to visual judgment using machine learning techniques. In this study, support background machines and random forest were used among machine learning models, and as a result of calculating accuracy as performance evaluation indicators of the two models, the accuracy was 85.7% and 80.2%, respectively.

The Development of An Efficient Zigbee Bridge for Legacy Device Control (레거시 기기 통합 제어를 위한 효율적 Zigbee Bridge 개발)

  • Lee, Seung-Min;Son, Sung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2134-2142
    • /
    • 2010
  • IR remote control is the most common way to control home appliances nowadays. Each legacy device is controlled with their own remote controller, and it is not standardized yet. Although it is possible to handle multiple devices with a integrated remote controller, not all the devices and command sets are supported. There are also limitations in expandability especially when new or special command sets are required. In this paper, a efficient zigbee bridge which transforms a command set sent via zigbee to IR comment set is developed. The bridge also has a learning function based on a header comparison method. When a new command is sent, the bridge learn the new code. When a existing code is sent, the bridge dispatches applicable IR command to the appliance. With this approach, it is possible to obtain expandability and flexibility for new commands, and increase the communication efficiency up to 56.8 times.

Design and Implementation of an Learning System based on Mobile Environments using Personal Study Information (개인별 학습정보를 이용한 모바일 기반 학습시스템의 설계 및 구현)

  • Moon, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.507-512
    • /
    • 2010
  • Many learning methods are recently being proposed for web-based remote education and a method commonly applied to web-based learning is learning through questions. In the existing methods, the difficulty of questions is chosen by learners in accordance with their level or questions are selected dynamically. As these methods are simply based on difference among questions presented, however, it is hardly possible for learners to study according to their abilities. To solve the problem, we adjusted the difficulty of questions presented based on information on individuals' weak points for different types of questions. Under the system individuals can learn by applying information on their abilities with regard to the type and difficulty of questions repeatedly, so the system can provide more effective distance learning. To overcome space restrictions in learning, also, we design and implement a mobile study system on the top of PDA platforms.