• Title/Summary/Keyword: remote driving system

Search Result 97, Processing Time 0.042 seconds

A development of H/W and S/W platform of remote controllable agricultural robot based on XP embedded system (XPE기반 원격방제용 농업로봇의 H/W 및 S/W 플랫폼 개발)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1125-1131
    • /
    • 2012
  • According to abrupt decrese in number of farmer and ageing society, there has been a need for development of low cost agricultural robot. In this paper, a H/W and S/W platform of caterpillar type agricultural chemical dusting robot based on XP embedded system were described. The developed agricultural robot has 2 d.o.f caterpillar type driving wheel and 2 d.o.f chemical dusting spray mechanical system. The H/W platform of the agricultural robot consists of robot controller, remote controller and sensor controller. In S/W platform, 5 processes work concurrently, which are task manager, TCP-IP communication process, localization process, wheel control, and sensor control process. This robot platform has been developed for chemical dusting robot. We proved this system's validity through field test.

Evaluations for Representativeness of Light-Duty Diesel Vehicles' Fuel-based Emission Factors on Vehicle Operating Conditions (연료 소비량에 기반한 소형 경유차 대기오염물질 배출계수의 운전조건별 대표성 평가)

  • Lee, Taewoo;Kwon, Sangil;Son, Jihwan;Kim, Jiyoung;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.745-756
    • /
    • 2013
  • The purpose of this study is to evaluate representativeness of fuel-based emission factors. Twelve light-duty diesel vehicles which meet Euro-3 to 5 legislative emission limits were selected for emission tests. Second-by-second modal emission rates of vehicles were measured on a standard laboratory chassis dynamometer system. An off-cycle driving cycle was developed as a representative Korean real-world on-road driving cycle. Fuel-based emission factors were developed for short trip segments that involved in the selected driving cycle. Each segment was defined to have unit travel distance, which is 1 km, and characterized by its average speed and Relative Positive Acceleration (RPA). Fuel-based $NO_x$ emission factors demonstrate relatively good representativeness in terms of vehicle operation conditions. $NO_x$ emission factors are estimated to be within ${\pm}20%$ of area-wide emission factor under more than 40% of total driving situations. This result implies that the fuel-based $NO_x$ emission factor could be practically implemented into the on-road emission management strategies, such as a remote sensing device (RSD). High emitting vehicles as well as high emitting operating conditions heavily affect on the mean values and distributions of CO and THC emission factors. Few high emitting conditions are pulling up the mean value and biasing the distributions, which weaken representativeness of fuel-based CO and THC emission factors.

A remote vehicle diagnosis and control system based on mobile cellular network (이동 통신망 기반의 차량 원격 진단 및 제어 시스템)

  • Choi Yong-Wun;Hong Won-Kee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.69-76
    • /
    • 2006
  • Telematics, which is a compound word of a telecommunication and informatics, provides drivers with useful driving information such as driving path guidance, accident or robbery detection, traffic conditions and other valuable data at real time. This paper proposes and implements how to build a telematics terminal equipped with CDMA and GPS running embedded Linux, to check a vehicle's state through communication between telematics server and vehicle terminals using a cellular phone and to control a vehicle using SMS as shown in Figure 1. In order to do this, we use the SK-VM platform which is mobile terminal platform based on JAVA to design, implement and evaluate it.

  • PDF

Implementation of Network Image Control System using Wireless Robot (무선 로봇을 이용한 네트워크 영상 제어 시스템의 설계)

  • 김택수;박상조
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.177-180
    • /
    • 2003
  • In this paper, we implement the network image control system in which a wireless robot with a built camera monitors the dangerous place where human cannot approach. In the proposed network image control system, the noise occurred in wireless communication is reduced by implementing the noise eliminating circuit and the driving time of a wireless robot is increased by adopting the mercury battery. By constructing the image control network with the Internet, the image is monitored controled in the remote site with a wireless robot.

  • PDF

The design concept of the On-Board Computer System using identification coding method (차상컴퓨터장치 식별 코딩 설계방법에 대한 연구)

  • Choi, Kwon-Hee;Ra, Joon-Ho;Shim, Jae-Chul;Kim, Hyung-In;Jung, Sung-Yun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1398-1402
    • /
    • 2007
  • In a high speed train, OBCS(On-Board Computer System) is a up-to-date computer control system that provide controlling, monitoring, maintaining and reparing of the important device, supporting a driver, status of a train, service maintenance, managing the remote control mode, driving order & control, control of a electrical or pneumatic circuit and a passenger service. In general, OBCS is located in each car but in a power car, both main and auxiliary computers are used. These avoid a network collision and maintain the independence of condition and failure records with the information of line number, train number and car number. This paper is intended to provide the information about the identification coding method of domestic and foreign OBCS, for the new high speed train (KTX-II).

  • PDF

Development of Wired Monitoring System for Layers Rearing in Muti-tier Layers Battery by Machine Vision (기계시각을 이용한 고단 직립식 산란계 케이지의 유선 감시시스템 개발)

  • Zheng, S.Y.;Chang, D.I.;Lee, S.J.;So, J.K.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.436-442
    • /
    • 2006
  • This research was conducted to design and develop a wired monitoring system for judging if sick or dead layers (SDL) exist in multi-tier layers battery (MLB) by machine vision, and to analyze its performance. In this study, 20 Brown Leghorn (Hi-Brown) layers aged 37 weeks old, were used as the experimental animals. The intensity of concern paid by layers on feed was over 90% during 5 minutes and 30 seconds after providing feed, and normal layers (NL) had been standing to take feed for that period. Therefore, in this study, the optimal judging time was set by this test result. The wired monitoring system developed was consisted of a driving device for carrying machine vision systems, a control program, a RS232 to RS485 convertor, an automatic positioning system, and an image capture system. An image processing algorithm was developed to find SDL in MLB by the processes of binary processing, erosion, expansion, labeling, and reckoning central coordinate of the captured images. The optimal velocity for driving unit was set up as 0.13 m/s by the test results for wired monitoring system, and the proximity switch was controlled not to be operated for 1.0 second after first image captured. The wired monitoring system developed was tested to evaluate the remote monitoring performance at lab-scale laying hen house. Results showed that its judgement success.ate on normal cage (without SDL) was 87% and that on abnormal cage (with SDL) was 90%, respectively. Therefore, it would be concluded that the wired monitoring system developed in this study was well suited to the purpose of this study.

A Study on the Fabrication and Characteristics of Snow Removal PV Module & System using Heating Film (발열 필름을 이용한 제설 기능 PV module & system 제작 및 특성평가)

  • Park, Eun Bee;Cho, Geun Yuoung;Cho, Sung Bae;Kim, Hyun Jun;Yu, Jeong Jae;Park, Chi Hong
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.159-163
    • /
    • 2016
  • Piled snow upon PV module interferes with Photoelectric Effect process through photovoltaic directly. As a result of this phenomenon, its generation efficiencies keep decreasing or are stuck at zero power generating status. In addition, PV facilities have been installed on those places such as water surface, roof-top, and other isolated places, dealing with conditions of "Securing high REC weighted value", "Difficulty of securing land" and so forth. Through this study, we are able to actualize the function of heating over PV modules when it snows. We adopted laminating method through heating film and modules, guaranteeing warranty more than for 25 years. Also we are trying remote control systemically, not by hardware control, to run parallel with automatic driving and monitoring system which enable to control operation time, insolation, amount of snowfall automatically. We applied analysis of actual proof to both snow removal PV system and general PV power system, and these led to bear power consumption analysis while snow-removing, and its comparison after finishing the task as "One stone, two birds." In the long run, we could carry out economic analysis against snow removal system, and this helps to verify the most maximized control method for snow removal conditons on a basis of weather information. this study shall let prevent people from negligent accidents, and improve power generation problems as mentioned from the top. Ultimately, we expect to apply this system to heavy snowfall regions in winter season in spite of its limited system installaion in Korean territory, initially.

Development of a Vehicle Positioning Algorithm Using Reference Images (기준영상을 이용한 차량 측위 알고리즘 개발)

  • Kim, Hojun;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1131-1142
    • /
    • 2018
  • The autonomous vehicles are being developed and operated widely because of the advantages of reducing the traffic accident and saving time and cost for driving. The vehicle localization is an essential component for autonomous vehicle operation. In this paper, localization algorithm based on sensor fusion is developed for cost-effective localization using in-vehicle sensors, GNSS, an image sensor and reference images that made in advance. Information of the reference images can overcome the limitation of the low positioning accuracy that occurs when only the sensor information is used. And it also can acquire estimated result of stable position even if the car is located in the satellite signal blockage area. The particle filter is used for sensor fusion that can reflect various probability density distributions of individual sensors. For evaluating the performance of the algorithm, a data acquisition system was built and the driving data and the reference image data were acquired. Finally, we can verify that the vehicle positioning can be performed with an accuracy of about 0.7 m when the route image and the reference image information are integrated with the route path having a relatively large error by the satellite sensor.

Design of Highway Accident Detection and Alarm System Based on Internet of Things Guard Rail (IoT 가드레일 기반의 고속도로 사고감지 및 경보 시스템 설계)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1500-1505
    • /
    • 2019
  • Currently, as part of the ICT Smart City, the company is building C-ITS(Cooperative-Intelligent Transport Systems) for solving urban traffic problems. In order to realize autonomous driving service with C-ITS, the role of advanced road infrastructure is important. In addition to the study of mid- to long-term C-ITS and autonomous driving services, it is necessary to present more realistic solutions for road traffic safety in the short term. Therefore, in this paper, we propose a highway accident detection alarm system that can detect and analyze traffic flow and risk information, which are essential information of C-ITS, based on IoT guard rail and provide immediate alarm and remote control. Intelligent IoT guard rail is expected to be used as an intelligent advanced road infrastructure that provides data at actual road sites that are required by C-ITS and self-driving services in the long term.

A Design of AMCS(Agricultural Machine Control System) for the Automatic Control of Smart Farms (스마트 팜의 자동 제어를 위한 AMCS(Agricultural Machine Control System) 설계)

  • Jeong, Yina;Lee, Byungkwan;Ahn, Heuihak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes the AMCS(Agricultural Machine Control System that distinguishes farms using satellite photos or drone photos of farms and controls the self-driving and operation of farm drones and tractors. The AMCS consists of the LSM(Local Server Module) which separates farm boundaries from sensor data and video image of drones and tractors, reads remote control commands from the main server, and then delivers remote control commands within the management area through the link with drones and tractor sprinklers and the PSM that sets a path for drones and tractors to move from the farm to the farm and to handle work at low cost and high efficiency inside the farm. As a result of AMCS performance analysis proposed in this paper, the PSM showed a performance improvement of about 100% over Dijkstra algorithm when setting the path from external starting point to the farm and a higher working efficiency about 13% than the existing path when setting the path inside the farm. Therefore, the PSM can control tractors and drones more efficiently than conventional methods.