• Title/Summary/Keyword: remediation system

Search Result 224, Processing Time 0.03 seconds

The In-Situ Ozone Oxidative Remediation Potential of Diesel Fuel-contaminated Soil (디젤오염토양에 대한 지중 오존산화처리 적용 가능성)

  • 유도윤;신응배;배우근
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.3-15
    • /
    • 1999
  • This paper includes the basic experimental results performed for developing an innovative and technologically feasible process wherein gaseous ozone, a powerful oxidant. is injected directly into vadose zone by which in-situ chemical degradation of semi- or, non-volatile petroleum product such as diesel fuel is derived. As ozone gas injected continuously(50mL/min, 119.0$\pm$6.1mg/L) into soil packed columns artificially contaminated with diesel fuel(initial concentration 1,485mg-DRO/kg/soil), the removal rates at the inlet and outlet point of 14hrs-operated column are 87.9% and 100.0%, respectively. On the other hand, soil vapor extraction system showed less than 30% of removal rates of residual diesel both at the inlet and outlet samples under the same experimental conditions which confirms the limited treatability of SVE in diesel contaminated soil.

  • PDF

Effect of Coagulation in Coagulation/Ultrafiltration Hybrid System in Water Treatment Process (정수처리용 응집.한외여과 혼성공정에서 응집 효과에 관한 연구)

  • Moon, Seong-Yong;Lee, Sang-Hyub;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.837-843
    • /
    • 2005
  • Coagulation influence was evaluated as the pretreatment for ultrafiltration. Coagulation was expected to improve water quality, reduce membrane fouling and increase backwash effect. Continuous operation of UF was employed in order to investigate the influence of coagulation. Alum, PACS and Ferric chloride were used as coagulants separately. From the result of the research, coagulation can improve the treated water quality greatly. Organic removal was increased more than turbidity and showed an improvement of 30.6% at most. All three coagulants presented conspicuous reduction of membrane fouling, among which PACS was the most effective with long term run. Backwash effect differed with different coagulants while Ferric chloride turned out to be the most effective one. The optimum dosage of coagulant resulted in the highest backwash efficiency.

Remediation of Acid Mine Drainage from an Abandoned Coal Mine Using Steel Mill Slag, Cow Manure and Limestone (제강슬래그, 우분 및 석회석을 활용한 폐 석탄광의 산성광산배수 처리)

  • Jung Myung-Chae
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.16-23
    • /
    • 2005
  • In order to remediate acid mine drainage (AMD) from the Jeongam coal mine, steel mill slag, cow manure and limestone were used. As a result of batch test, the proper amounts for treating 1 L of acid mine water from the mine were determined as 15 g of steel mill slag, 15 g of cow manure and 500 g of limestone. After feasibility test, remediation system was arranged in the order of steel mill slag tank combination of cow manure and limestone, precipitation tank and oxidation tank. During 54 days' operations, the pH values of the treated waters increased from 3.0 to 8.3 and 61 % of sulfate concentration in an initial water was decreased. In addition, the removal efficiencies for metals in the water were nearly 99.9% for Al, Fe, Zn and 92.6% for Mn. Thus, the combination of steel mill slag, cow manure and limestone can be used as neutralization 때d metal removal for acid mine drainage.

A New Circulation Method for Electrokinetic Remediation of Soil Contaminated with Lead (새로운 순환방식을 적용한 동전기 정화기술에 의한 오염토양내의 납제거)

  • 이현호;백기태;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • A new method has been proposed and developed that solves the problem of decreasing electroosmotic flow rate by excess $H^{+}$ and precipitation of heavy metal by $OH^{-}$. An electrolytic solution was circulated between the anode and cathode compartments that enabled the pH at the anode and cathode to be controlled. The change of the soil pH by circulation systems affects the operation time, by lowering the rate of increase of the electric potential gradient, and the removal efficiency of heavy metals, by affecting the soil pH. Since there was no effluent from the cathode compartment in circulation system, there was no need to treat the wastewater after the experiment, which resulted in the reduction of influent electrolyte volume.

Performance Study on Pilot-scale Constructed Wetlands in order to Restore Contaminated Stream (오염하천의 정화를 위한 파일럿 규모의 인공습지 적용)

  • Kim, Seung-Jun;Choi, Yong-Su;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.546-556
    • /
    • 2006
  • The purpose of this study is to improve the polluted stream water quality by pilot-scale five different constructed wetlands (CWs). Cell 1 to 3 are newly designed 2SFCW (Surface-subsurface flow CW) with 1 to 3 flow shifters (FS) in the middle of the wetland system. Cell 4 and 5 are control CW (CCW), but Cell 5 is the same type as Cell 3. The FS, which converts the route of surface and subsurface flow between two wetlands connected in series, was able to enhance the treatability of TN via nitrification and denitrification and of SS due to filtration and sedimentation. The void fraction and dispersion number of Cell 1, 2 and 3 obtained from the RTD analysis were found to be 0.73 and 0.17, respectively. COD and TP removal efficiencies of Cell 1 to 3 were similar to that of Cell 4 and 5. SS removal efficiencies of Cell 1 to 3 and 5 with FS were 5-10% higher than that of Cell 4 without FS. TN removal efficiencies of Cell 1 to 3 were 3-14% higher than that of Cell 4 and 5. The average $R^2$ values of COD, SS, TN and TP obtained from nonlinear regression analysis were similar to the results of other researchers.

Study of the Performance of a Dry Cleaning Method for Polluted Ballast Gravel of Railroad Fields (철도부지 오염도상자갈의 건식 정화 기술 성능 연구)

  • Cho, Youngmin;Park, Duckshin;Kwon, Tae-Soon;Lee, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.552-557
    • /
    • 2015
  • Ballast gravel in a railroad field is often polluted by grease and heavy metals. In this paper, the performances of a dry cleaning method for polluted ballast gravel in which pollutants on the gravel surface can be physically removed was extensively studied. A polluted ballast cleaning device able to shoot emery blasting media onto the surface using compressed air was prepared. Polluted ballast gravel was put into this device for cleaning, with the treatment time varied from 1 to 10 min. The cleaning efficiency of the total petroleum hydrocarbons and heavy metals were studied. The total petroleum hydrocarbon removal efficiency was 70-80% for gravels sampled from a locomotive waiting line, while it was 40-60% for gravels sampled from a turnout area. The heavy metal removal efficiency exceeded 90% for copper and lead, while it was 65-80% for nickel and zinc. This system was found to be effective for the remediation of polluted ballast gravels.

Application of a Soil Separation System for the Remediation of Arsenic Contaminated Soil in a Metal Mining Area (폐금속광산 지역의 비소오염토양 처리를 위한 선별 기술 적용)

  • ParK, Chan-Oh;Kim, Jong-Won;Park, Jun-Hyoung;Lee, Young-Jae;Yang, In-Jae;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.56-64
    • /
    • 2013
  • After the law has been enacted for the prevention and recovery of mining damage in 2005, efforts of remediation have been started to recover heavy metal contaminated soils in agricultural land near mining sites. As part of an effort, the upper part of cultivation layer has been treated through covering up with clean soil, but the heavy metal contamination could be still spreaded to the surrounding areas because heavy metals may be remained in the lower part of cultivation layers. In this study, the most frequently occurring arsenic (As) contamination was selected to study in agricultural land nearby an abandoned metal mining site. We applied separation technologies considering the differences in the physical characteristics of soil particles (particle size, density, magnetic properties, hydrophobicity, etc.). Based on physical and chemical properties of arsenic (As) containing particles in agricultural lands nearby mining sites, we applied sieve separation, specific gravity separation, magnetic separation, and flotation separation to remove arsenic (As)-containing particles in the contaminated soil. Results of this study show that the removal efficiency of arsenic (As) were higher in the order of the magnetic separation, flotation separation, specific gravity separation and sieve separation.

Treatment of Phenol Contaminated Soil Using Sulfidated Zero-Valent Iron as a Persulfate Activator for Advanced Oxidation Process (황화영가철 기반의 과황산 고도산화공정을 이용한 페놀 오염토양 처리)

  • Hyuk Sung Chung;Nguyen Quoc Bien;Jae Young Choi;Inseong Hwang
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • A persulfate(PS)/sulfidated microscale zero-valent iron(S-mZVI) system was tested for treating a soil contaminated with phenol. Sulfidation of bare mZVI was conducted using a mechanochemical process utilizing a ball mill in order to improve persulfate activation capacity and stability of unmodified mZVI. The synthesized S-mZVI performed markedly better than the bare mZVI in activating PS. The optimum molar ratio of sulfur to mZVI was around 0.12. In the soil slurry experiments, a very rapid and complete removal of phenol was observed at the optimum molar ratios of PS to S-mZVI of 2:1 and PS to phenol of 16:1. The phenol removal efficiencies decreased as the water content of the slurries decreased. This was believed to be due to increased soil oxidant demand as the amount of soil was increased as relative to the water content. To evaluate the field applicability of the process, slurry experiments adopting high soil contents were carried out that simulated in-situ soil mixing conditions. These experiments resulted in substantially compromised degradation efficiencies of 54.3% and 43.8% within 4 hours. The current study generally shows that the PS/S-mZVI process has a potential to be developed into a remediation technology for soils contaminated with organics.

A Study on Operating Characteristics of the CO2 Laser with Inductively Pulsed Power System (유도형(誘導型) Pulsed Power 전원을 이용한 CO2 레이저 동작 특성에 관한 연구)

  • Kim, Geun-Yong;Min, Byoung-Dae;Kim, Yong-Cheol;Lee, Yu-Soo;Chung, Hyun-Ju;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1710-1713
    • /
    • 2002
  • Recently, the pulsed power system has been used to many applications. Such as remediation of environmental hazards, food sterilization, air pollution control E/P (Electrostatic Precipitator), DeNOx/DeSOx power system, ozone generator, high energy physics, and other power source applications. A pulse energy efficiency for load depends on the rising time, peak value. Pulse duration and impedance matching etc. The pulsed power system generally required for short pulse duration and high peak value was forced to consider its volume and economy. In this paper, we investigated operating characteristics of the CO2 laser using an inductively pulsed power system.

  • PDF

Effects of Rain Gardens on Removal of Urban Non-point Source Pollutants under Experimental Conditions (실험실 조건에서 레인가든의 도시 비점오염물질 제거효과)

  • Kim, Changsoo;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.676-685
    • /
    • 2012
  • As impermeable layer continues to increase with the urbanization process, direct input of nonpoint source pollutants into water bodies via stormwater has caused serious effects on the aquatic ecosystem. Potential applications of rain gardens are increasing not only as best management practices (BMP) for reducing the level of nonpoint source pollutants but also as an ecological engineering alternative for low impact development (LID). In this study, remediation performance of various planting types, such as a mixed planting system with shrubs and herbaceous plants, was assessed quantitatively to effectively manage stormwater and increase landscape applicability. The mixed planting system with Rhododendron lateritium and Zoysia japonica showed the highest removal performance of $76.9{\pm}7.6%$ and $58.4{\pm}5.0%$ for total nitrogen and $89.9{\pm}7.9%$ and $82.4{\pm}5.2%$ for total phosphorus at rainfall intensities of 2.5 mm/h and 5.0 mm/h, respectively. The mixed planting system also showed the highest removal performance for heavy metals. The results suggest that a rain garden with the mixed planting system has high potential applicability as a natural reduction system for nonpoint source pollutants in order to manage stormwater with low concentrations of pollutants and will increase water recycling in urban areas.