• Title/Summary/Keyword: remediation

Search Result 1,260, Processing Time 0.026 seconds

Remediation of groundwater contaminated with MTBE using micellar solubilization

  • 백기태;조현정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.151-154
    • /
    • 2001
  • To assess the remediation possibility of groundwater contaminated with MTBE, micellar solubilization by various surfactants was evaluated. Micellar solubilization is basic phenomena to apply micellar enhanced ultrafiltration for groundwater remediation contaminated with MTBE. Sodium dodecyl sulfate (SDS) shows the best removal efficiency among various nonionic, cationic and anionic surfactants. Molar ratio of SDS to MTBE was the most important factor for removal of MTBE using micellar solubilization. With the ratio of more than 13, the removal efficiency was saturated to 55%.

  • PDF

토양세척법과 동전기 정화 기술을 이용한 중금속 오염지반의 원위치 정화

  • 김병일;한상재;이군택;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.199-202
    • /
    • 2004
  • In this study the field-scale tests were performed in which in-situ E/K remediation technologies were applied, and then the results were present. For traditional E/K remediation method the efficiency of remediation is not large, but the enhanced method with citric acid significantly increases the removal efficiency. Also EDTA, reported as a good enhancement agent for removal of heavy metals, is similar to that of citric acid. Therefore citric acid is preferred rather than EDTA in view of the cost on the contaminant removal per unit concentration.

  • PDF

A study on electric current variation characteristics during Electrokinetic remediation of kaolinite contaminated by Pb (납으로 오염된 카올린의 Electrokinetic 정화기법 적용시 전류변화 특성에 관한 연구)

  • 김정환;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.302-306
    • /
    • 2000
  • In case of applying electrokinetic remediation, magnitude of electric current is one of major factors for estimation of contaminant transport. In practice, electric current provide determination of electric conductivity based on specimen resistance. Electric current variation is produced during Electrokinetic remediation test. Electric current is decreased by expotential function according to time in condition of constant voltage. This can be interpreted as precipitation effect by OH$^{-10}$ generation in a cathode.

  • PDF

The Extended Site Assessment Procedure Based on Knowledge of Biodegradability to Evaluate the Applicability of Intrinsic Remediation (자연내재복원기술(Intrinsic Remediation)적용을 위한 오염지역 평가과정 개발)

  • ;Robert M. Cowan
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.3-21
    • /
    • 1997
  • The remediation of contamiated sites using currently available remediation technologies requires long term treatment and huge costs, and it is uncertain to achieve the remediation goal to drop contamination level to either back-ground or health-based standards by using such technologies. Intrinsic remediation technology is the remediation technology that relies on the mechanisms of natural attenuation for the containment and elimination of contaminants in subsurface environments. Initial costs for the intrinsic remediation may be higher than conventional treatment technologies because the most comprehensive site assessment for intrinsic remediation is required. Total remediation cost, however may be the lowest among the presently employed technologies. The applicability of intrinsic remediation in the contaminated sites should be theroughly investigated to achieve the remedial goal of the technology. This paper provides the frame of the extended site assessment procedure based on knowledge of biodegradability to evaluate the applicability of intrinsic remediation. This site assessment procedure is composed of 5 steps such as preliminary site screening, assessment of the current knowledge of biodegradability, selecting the appropriate approach, analyzing the contaminant fate and transport and planning the monitoring schedule. In the step 1, followings are to be decided 1) whether to go on the the detailed assessment or not based on the rules of thumb concerning the biodegradability of organic compounds, 2) which protocol document is selected to follow for detailed site assessment according to the site characteristics, contaminants and the relative distance between the contamination and potential receptors. In the step 2, the database for biodegradability are searched and evaluated. In the step 3, the appropriate biodegradability pathways for the contaminated site is selected. In the step 4, the fate and transport of the contaminants at the site are analyzed through modeling. In the step 5, the monitoring schedule is planned according to the result of the modeling. Through this procedure, users may able to have the rational and systematic informations for the application of intrinsic remediation. Also the collected data and informations can be used as the basic to re-select the other remediation technology if it reaches a conclusion not to applicate intrinsic remediation technology at the site from the site assessment procedure.

  • PDF

Immobilization of Lead in Contaminated Soil by Ekectrokinetic Remediation and Adsorbent (흡착재와 Electrokinetic 기법을 이용한 납 오염토의 고정화)

  • Han Sang-Jae;Kim Byung-Il;Lee Goon-Taek;Kim Soo-Sam
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.1-11
    • /
    • 2005
  • This study applied EK method to remediate contaminated soil by lead (Pb), tried increasing efficiency of remediation using adsorbent (apatite and zeolite) as enhanced EK remediation method to overcome the limit of traditional EK remediation method. Adsorption tests on Pb were practiced to extract EK, making different concentration of contaminated soil, voltage condition, operating time etc., transferring Pb-ion into the position of adsorbent, then tried immobilization. On this results, the efficiency of remediation is different on its test conditions. In addition, the efficiency of remediation was not only improved by adding electrode revεrsal and install position of adsorbent but also satisfied TCLP regulation of EPA in USA through the whole sample range. Finally, absorption and immobilization capacity of apatite and zeolite proved on its excellence and confirmed the possibility of application of apatite and zeolite as enhanced EK remediation method.

Management and Remediation Technologies of Contaminated Sediment (오염퇴적물 관리방향 및 처리공법)

  • Kim, Geon-Ha;Jeong, Woo-Hyeok
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • As Total Maximum Daily Load program is being implemented, needs for the management and treatment of contaminated sediment are rising to attain cleaner water resources. In this paper, impacts and management methods of contaminated sediment were reviewed. Remediation technologies for contaminated sediment including dredging, natural attenuation, in situ solidification/stabilization, in situ biological remediation, in situ chemical remediation and capping were reviewed. Integrated remediation scheme was presented as well.

Effect of Degradation Processes on Optimal Remediation Design Sorption and First-Order Decay Rate

  • Park, Dong-Kyu;Ko, Nak-Youl;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.503-508
    • /
    • 2004
  • Optimal remediation design using the pump and treat(P&T) method and natural attenuation was accomplished in consideration for degradation processes, such as sorption and first-order decay rate. Variation of both sorption and first-order decay rate has influence on design of optimal remediation application. When sorption effect increases, the more pumping rate and pumping wells are required. The location of operated wells is on the centerline of contaminant plume and wells near hot spot are mainly operated when sorption effect increases. The higher of first-order decay rate, the less pumping rate is required. These results show that the degradation processes have to be considered as one of the essential factors for optimal remediation design.

  • PDF

Improved Performance of Microbial Fuel Cell Using Membrane-Electrode Assembly

  • PHAM THE HAl;JANG JAE KYUNG;MOON HYUN SOO;CHANG IN SEOP;KIM BYUNG HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.438-441
    • /
    • 2005
  • A mediator-less microbial fuel cell (MFC) was used to determine the performance effects of a membrane­electrode assembly (MEA). The MFC with an MEA generated a higher current with an increased coulomb yield when compared to an MFC with a separate cathode. Less oxygen was diffused through an MEA than through a Nafion membrane. The MFC performance was improved with a buffer, although a high-strength buffer reduced the performance.