• Title/Summary/Keyword: remazol brilliant blue R

Search Result 26, Processing Time 0.021 seconds

알칼리성 염색폐수의 색도제거를 위한 호알칼리성 균주의 분리와 성장 특성

  • Kim, Jeong-Mok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.544-548
    • /
    • 2000
  • Strains degrading and decolorizing anthraquinone dyes, Remazol brilliant blue R were isolated from natural system, was named as RBB. The optimal culture conditions of temperature and pH were $35^{\circ}C$, 9.0, respectively. Growth rate of cells in conditions of aerobic shaking more than standing culture conspicuously increased.

  • PDF

Effect of Culture Parameters on the Decolorization of Remazol Brilliant Blue R by Pleurotus ostreatus

  • Kim, Bok-Sun;Ryu, Seong-Joo;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.101-104
    • /
    • 1996
  • The influences of culture parameters on the decolorization of anthron-type dye, Remazol brilliant blue R(RBBR) by Pleurotus ostreatus were studied in defined media. In the decolorization, 1-10 mM nutrient nitrogen and 40 mM glucose were effective whereas agitation and Tween 80 were not suitable. The decolorization occurred and the activity of extracellular peroxidase was detected during the stationary phase.

  • PDF

Simultaneous Degradation of Polycyclic Aromatic Hydrocarbons by Attractive Ligninolytic Enzymes from Phlebia brevispora KUC9045

  • Lee, Aslan Hwanhwi;Lee, Hanbyul;Kim, Jae-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.201-207
    • /
    • 2016
  • The hazards associated with the polycyclic aromatic hydrocarbons (PAHs) are known to be recalcitrant by their structure, but white rot fungi are capable of degrading recalcitrant organic compounds. Phlebia brevispora KUC9045 isolated from Korea was investigated its efficiency of degradation of four PAHs, such as phenanthrene, anthracne, fluoranthene, and pyrene. And the species secreted extracellular laccase and MnP (Manganese dependent peroxidase) during degradation. P. brevispora KUC9045 demonstrated effective degradation rates of phenanthrene (66.3%), anthracene (67.4%), fluoranthene (61.6%), and pyrene (63.3%), respectively. For enhancement of degradation rates of PAHs by the species, Remazol Brilliant Blue R (RBBR) was preferentially supplemented to induce ligninolytic enzymes. The biodegradation rates of the three PAHs including phenanthrene, fluoranthene, and pyrene were improved as higher concentration of Remazol Brilliant Blue R was supplemented. However, anthracene was degraded with the highest rate among four PAHs after two weeks of the incubation without RBBR addition. According to the previous study, RBBR can be clearly decolorized by P. brevispora KUC9045. Hence, the present study demonstrates simultaneous degradation of dye and PAHs by the white rot fungus. And it is considered that the ligninolytic enzymes are closely related with the degradation. In addition, it indicated that dye waste water might be used to induce ligninolytic enzymes for effective degradation of PAHs.

Dye Removal by Phlebia tremellosa and Lignin Degrading Enzyme Transformants (아교버섯(Phlebia tremellosa)의 리그닌 분해효소 형질전환체를 이용한 염료의 탈색)

  • Kum, Hyun-Woo;Ryu, Sun-Hwa;Lee, Sung-Suk;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.93-95
    • /
    • 2010
  • White rot fungi which have lignin degrading enzymes show high degrading activity to diverse recalcitrant compounds such as polycyclic aromatic compounds, dyes, explosives and endocrine disrupting chemicals. We have examined decolorizing activity of dyes by Phlebia tremellosa and two transformants which had genetically transformed using laccase or manganese peroxidase (MnP) gene. In case of methyl green, wild type strain showed 50% decolorization while laccase transformant (TF2-1) and MnP transformant (T5) showed more than 90% decolorization on day 3. Remazol brilliant blue R(RBBR) was decolorized up to 85% by two transformants while the wild type showed 67% decolorization on day 3. Transformants TF2-1 and T5 both showed increased laccase and MnP activity respectively during the whole growing phase.

Analysis of lignocellulose degradation by Oak mushroom (Lentinula edodes) (원목재배용 표고(Lentinula edodes)의 목질섬유소 분해특성 비교)

  • Jeong, Sang-Wook;Jang, Eun-Gyeong;Jeong, Chan-Mun;Ko, Han-Gyu;Kwon, Hyuk-Woo;Ban, Seung-Eon
    • Journal of Mushroom
    • /
    • v.16 no.4
    • /
    • pp.272-278
    • /
    • 2018
  • Lignin degrading enzymes from Lentinula edodes have broad substrate specificities, and therefore can degrade a variety of recalcitrant compounds. In this study, the lignolytic biodegradation was investigated in five different L. edodes fungi (Chunbaegko, Sanjo 303ho, Poongnyunko, Baekhwahyang, and Soohyangko). The fungi were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in malt extract broth medium. Sanjo 303ho, Poongnyunko, Baekhwahyang, and Soohyangko rapidly decolorized RBBR within 7 days. The activities of manganese peroxidase (MnP) and laccase were determined in the absence and presence of lignin. Poongnyunko displayed the highest ligninolytic activity on day 7 of incubation (2,809 U/mg and 2,230 U/mg for MnP and laccase, respectively).

Comparison of Lignocellulose degradation properties of Lentinula edodes varieties (표고(Lentinula edodes) 품종별 목질계 섬유소 분해효소 특성 비교)

  • Jeong, Sang-Wook;Jang, Eun-Kyoung;Choi, Seul-Ki;Seo, Kyoung-Sun;Jeong, Hee-Gyeong;Lee, Won-Ho;Ban, Seung-Eon
    • Journal of Mushroom
    • /
    • v.20 no.1
    • /
    • pp.29-33
    • /
    • 2022
  • In this study, five different Lentinula edodes cultivar (Chamaram, Sanbaekhyang, Sanjo 713ho, Sanjo 715ho, Sanjo 718ho) were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in MEB medium, respectively. Chamaram and Sanjo 713ho decolorized RBBR rapidly in MEB medium within 3 and 5 days. The activities of manganese peroxidase (MnP) and laccase were determined on the MEB medium with and without lignin. Sanjo 713ho resulted the highest ligninolytic enzyme activities on incubation day 1, indicating of 1,213 U/mg of MnP activity and 1,421 U/mg of laccase activity.

Screening of Outstanding White Rot Fungi for Biodegradation of Organosolv Lignin by Decolorization of Remazol Brilliant Blue R and Ligninolytic Enzymes Systems (Remazol Brilliant Blue R 탈색능과 리그닌 분해 효소시스템을 이용한 유기용매 리그닌 생분해 우수 균주 선별)

  • Hong, Chang-Young;Kim, Ho-Yong;Jang, Soo-Kyeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.19-32
    • /
    • 2013
  • In this study, outstanding white rot fungi for biodegradation of organosolv lignin were selected on the basis of their ligninolytic enzyme system. Fifteen white rot fungi were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in SSC and MEB medium, respectively. Six white rot fungi (Ceriporiopsis subvermispora, Ceriporia lacerate, Fomitopsis insularis, Phanerochaete chrysosporium, Polyporus brumalis, and Stereum hirsutum) decolorized RBBR rapidly in SSC medium within 3 days. The protein contents as well as the activities of manganese peroxidase (MnP) and laccase for 6 selected fungi were determined on the SSC medium with and without organosolv lignin. Interestingly, extracellular protein concentrations were determined to relative higher for S. hirsutum and P. chrysosporium in the presence of organosolv lignin than others. On the other hands, each fungus showed a different ligninolytic enzyme pattern. Among them, F. insularis resulted the highest ligninolytic enzyme activities on incubation day 6, indicating of 1,545 U/mg of MnP activity and 1,259 U/mg of laccase activity. In conclusion, $STH^*$ and FOI were considered as outstanding fungi for biodegradation of organosolv lignin, because $STH^*$ showed high extracellular protein contents and ligninolytic enzyme activities over all, and ligninolytic enzyme activities of FOI were the highest among white rot fungi used in this study.

Trametes sp. CJ-105에 의한 염료의 색도제거

  • Kim, Hyun-Soo;Oh, Kwang-Keun;Lee, Cheol-Woo;Lee, Jae-Heung;Jeon, Yeong-Joong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.630-635
    • /
    • 1997
  • Decolorization of congo red, methyl orange, poly R478, remazol brilliant blue R and crystal violet by white-rot fungus Trametes sp. CJ-105, isolated in Korea, was investigated. Remazol blue and methyl orange were almost completely decolorized after 2 days of culture, but congo red, crystal violet and poly R478 were decolorized by about 80%, 40% and 30% after 10 days of culture, respectively. As a result of determination of cell mass and enzyme activity, it was shown that color removal efficiency was related to cell mass and enzyme activity, and also found that only laccase (E.C.1.10.3.2) activity was existed in the culture broth. The decolorization ratios of remazol blue in the concentrations of 100ppm to 3, 000 ppm were 85% and above after 2 days of culture. In this study, we found that white-rot fungus, Trametes sp. CJ-105, was effective in decolorizing a wide range of structurally different synthetic dyes.

  • PDF

Isolation and Characterization of White Rot Fungi for Decolorization of Several Synthetic Dyes (염료의 색도 제거능력이 우수한 백색부후균 분리 및 특성연구)

  • 오광근;김현수;조무환;채영규;전영중
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.500-508
    • /
    • 1999
  • Several white-rot fungi collected from the mountains of Korea were evaluated for their ability to decolorize azo, polymeric, and reactive dyes. Strains CJ-105, CJ-212 and CJ-315, identified as Trametes sp., Pleurotus sp. and Fomes sp., respectively, showed higher potential for decolorization of those dyes in either solid or liquid media. For Trametes sp. CJ-105, 100ppm of Remazol Brilliant blue R and 500ppm of Acid Red 264 were completely decolorized after 2 days under liquid culture. The dominating ligninolytic enzyme existing in the culture broth was laccase (E.C. 1.10.3.2). Also, Pleurotus sp. CJ-212 and Fomes sp. CJ-315 showed similar patterns in decolorization of Remazol Brilliant Blue R and Acid Red 264. The extent of decolorization of the dyes in liquid culture was found to be proportional to the activities of the ligninolytic of decolorization of the dyes in liquid culture was found to be proportional to the activities of the ligninolytic enzymes produced by each strain. In addition to that Trametes sp. CJ-105 was highly effective in degradation of polycyclic aromatic hydrocarbons and pentachlorophenol by the activity of the ligninolytic enzymes produced. In this study, we found that white-rot fungi, Trametes sp. CJ-105(KFCC 10941), Pleurotus sp. CJ-212(KFCC 10943) and Fomes sp. CJ-315(KFCC 10942), were effective in decolorizing a wide range of structurally different synthetic dyes, as well as some chemical compounds which are known to be hardly degradable.

  • PDF

The Effects of Wood Rotting Fungi and Laccase on Destaining of Dyes and KP Bleaching Effluen

  • Cho, Nam-Seok;Park, J.M.;Choi, T.H.;Matuszewska, A.;Jaszek, M.;Grzywnowicz, K.;Malarczyk, E.;Trojanowski, K.;Leonowicz, A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.72-79
    • /
    • 1999
  • The ability of several wood rotting fungi for decolorization of two anthracene derivatives, Carminic acid (CA) and Remazol brilliant blue R (RBBR), and hardwood KP bleaching liquor (BL) as well as laccase activities in these fungi were studied. The enzyme activity appeared exclusively in fungi destaining RBBR and CA, but in the case of BL, such relationship was not observed. The laccase enzyme was released into the decolorization media and its inducible (but not constitutive) forms shown destaining activity. The purified inducible forms of Kuehneromyces mutabilis and Pleurotus ostreatus laccase destained CA. Thus the possible differentiation between specificity of particular LAC forms was confirmed. In addition the nitrogen starvation induced both laccase and CA destaining activities, but the increase was higher for decolorization of CA than LAC activity. Probably LAC would be only partly responsible for decolorization of this dye. This results suggested that purified LACs decolorize CA, however its destaining activities were considerably lower than the activities on syringaldazine.

  • PDF