• Title/Summary/Keyword: relining

Search Result 55, Processing Time 0.018 seconds

Reattachment of a fractured fragment with relined fiber post using indirect technique - a case report

  • Kim, Eun-Soo;Min, Kyung-San;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.324-328
    • /
    • 2014
  • Although fiber-reinforced posts have been widely used, they sometimes fail to obtain sufficient retention because of an extremely large canal space. To address this, several techniques have been introduced including relining of the fiber-reinforced posts. Here, we used a relined glass-fiber post to increase retention and fitness to the root canal in a crown reattachment case. The relining procedure was performed by using an indirect method on the working cast. This case also highlights the esthetic concerns regarding dehydration of the attached crown fragment.

Maintenance of complete denture (총의치의 유지관리)

  • Song, Young-Gyun
    • The Journal of the Korean dental association
    • /
    • v.55 no.1
    • /
    • pp.90-95
    • /
    • 2017
  • As residual ridge resorption occurs, complete dentures tend to become loose. Denture relining and rebasing are an essential element for improving a denture's stability and prevention side effect such as sore spot, epulis fissuratum. This paper focuses about health insurance is available for maintenance of complete denture and, methods of relining or rebasing.

  • PDF

The Effects of Various Metal Surface Treatments on the Shear Bond Strength between Titanium Denture Base and Relined Resins (타이타니움 의치상에 대한 다양한 금속표면처리제의 적용이 첨상레진과의 결합강도에 미치는 영향)

  • Eun, Jun-Young;Cho, In-ho;Lee, Jong-Hyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to evaluate the effect of various metal surface treatments on the shear bond strength between titanium denture base and relined resins. The surfaces of commercially pure(cp) titanium were sandblasted with $50{\mu}m$ $Al_2O_3$ for 20 seconds and each group was treated with MR $Bond^{(R)}$, Alloy $Primer^{(R)}$, and Super-Bond $C&B^{(R)}$ accordingly. The specimens were completed by application of relining resins. The specimens were stored in room temperature. And the shear bond strength of the specimens were measured with the MTS universal testing $machine^{(R)}$. The results were as follows: 1. In comparison with the relining materials, $Kooliner^{(R)}$ groups showed statistically higher shear bond strength than Tokuyama Rebase $II^{(R)}$ groups(p<0.05). 2. Comparing shear bond strength, according to surface treatment, Super-bond $C&B^{(R)}$ groups showed the highest bond strength and were significantly higher than the other three groups(p<0.05). Alloy $Primer^{(R)}$ groups showed no significant difference with the MR $Bond^{(R)}$ groups, but was significantly higher than the sandblasting-only groups(p<0.05). 3. Comparing surface treatment in each groups, for two types of relining resin, the group which applies $Kooliner^{(R)}$ and Super-bond $C&B^{(R)}$ showed the highest bond strength and showed significant difference compared to the other groups(p<0.05). When using Tokuyama Rebase $II^{(R)}$, Super-bond C&B group showed the highest bond strength, but there were no significant difference compared to the Alloy $Primer^{(R)}$ group. In this limited study, applying $Kooliner^{(R)}$ and Super-Bond $C&B^{(R)}$ after sandblasting is considered to be advantageous for relining of titanium base dentures.

Effects of relining materials on the flexural strength of relined thermoplastic denture base resins

  • Sun, Yunhan;Song, So-Yeon;Lee, Ki-Sun;Park, Jin-Hong;Ryu, Jae-Jun;Lee, Jeong-Yol
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.361-366
    • /
    • 2018
  • PURPOSE. The aim of this study was to evaluate the effects of relining materials on the flexural strength of relined thermoplastic denture base resins (TDBRs). MATERIALS AND METHODS. For shear bond strength testing, 120 specimens were fabricated using four TDBRs (EstheShot-Bright, Acrytone, Valplast, Weldenz) that were bonded with three autopolymerizing denture relining resins (ADRRs: Vertex Self-Curing, Tokuyama Rebase, Ufi Gel Hard) with a bond area of 6.0 mm in diameter and were assigned to each group (n=10). For flexural strength testing, 120 specimens measuring $64.0{\times}10.0{\times}3.3mm$ (ISO-1567:1999) were fabricated using four TDBRs and three ADRRs and were assigned to each group (n=10). The thickness of the specimens measured 2.0 mm of TDBR and 1.3 mm of ADRR. Forty specimens using four TDBRs and 30 specimens using ADRRs served as the control. All specimens were tested on a universal testing machine. For statistical analysis, Analysis of variance (ANOVA) with Tukey's test as post hoc and Spearman's correlation coefficient analysis (P=.05) were performed. RESULTS. Acry-Tone showed the highest shear bond strength, while Weldenz demonstrated the lowest bond strength between TDBR and ADRRs compared to other groups. EstheShot-Bright exhibited the highest flexural strength, while Weldenz showed the lowest flexural strength. Relined EstheShot-Bright demonstrated the highest flexural strength and relined Weldenz exhibited the lowest flexural strength (P<.05). Flexural strength of TDBRs (P=.001) and shear bond strength (P=.013) exhibited a positive correlation with the flexural strength of relined TDBRs. CONCLUSION. The flexural strength of relined TDBRs was affected by the flexural strength of the original denture base resins and bond strength between denture base resins and relining materials.

Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base

  • Park, Se-Jick;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.262-272
    • /
    • 2022
  • PURPOSE. This study aimed to analyze the shear bond strength between the 3D-printed denture base and the chairside relining material, according to the surface treatment. MATERIALS AND METHODS. Cylindrical specimens were prepared using DENTCA Denture Base II. The experimental groups were divided into 6 (n = 10): no surface treatment (C), Tokuyama Rebase II Normal adhesive (A), sandblasting (P), sandblasting and adhesive (PA), sandblasting and silane (PS), and the Rocatec system (PPS). After bonding the chairside relining material to the center of the specimens in a cylindrical shape, they were stored in distilled water for 24 hours. Shear bond strength was measured using a universal testing machine, and failure mode was analyzed with a scanning electron microscope. Shear bond strength values were analyzed using one-way analysis of variance, and Tukey's honest significant difference test was used for post-hoc analysis (P < .05). RESULTS. Group PPS exhibited significantly higher shear bond strength than all other groups. Groups P and PA displayed significantly higher bond strengths than the control group. There were no significant differences between groups PS and A compared to the control group. Regarding the failure mode, adhesive failure occurred primarily in groups C and A, and mixed failure mainly in groups P, PA, PS, and PPS. CONCLUSION. The shear bond strength between the 3D-printed denture base and the chairside relining material exhibited significant differences according to the surface treatment methods. It is believed that excellent adhesive strength will be obtained when the Rocatec system is applied to 3D-printed dentures in clinical practice.

EFFECT OF SURFACE DESIGN ON BOND STRENGTH OF RELINING DENTURE RESIN (결합면 형태가 이장용 레진의 결합강도에 미치는 영향)

  • Park Eun-Ju;Jin Tai-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.167-174
    • /
    • 2004
  • Statement of problem: Removable partial denture and complete denture often require denture base relines to improve the fit against the tissue-bearing mucosa because of gradual changes in edentulous ridge contours and resorption of underlying bone structure. Purpose: This study was performed to investigate the effect of surface design on bond strength of relining denture base resins to denture base acrylic resin. Materials and method: Heat curing resin(Lucitone 199, Dentsply U.S.A. and Vertex, Dentimex, Holland), self curing resin(Tokuso rebase, Tokuyama, Japan), and visible light curing resin(Triad, Dentsply, U.S.A.) were used in this study. The surface designs were classified as butt, bevel and rabbet joint and the bond strengths were measured by Universial Testing Machine (Zwick 2020, Zwick Co., Germany). Results and Conclusion: The obtained results from this study were as follows ; 1. The bond strength of Vertex resin was higher than those of Tokuso rebase and Triad. 2. The bond strength of rabbet and bevel joint was higher than that of butt joint. 3. The failure mode of Triad and Tokuso rebase was mainly adhesive, but cohesive failure was shown mainly in vertex.

THE EFFORT OF VARIOUS MIXING METHODS ON DYNAMIC VISCOELASTICITY OF A TEMPORARY SOFT LINING MATERIAL; COE-COMFORT

  • Ryu Hyun-Ju;Bae Hanna-Eun-Kyong;Shim June-Sung;Lee Seok-Hyung;Moon Hong-Suk;Chung Mun-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.641-646
    • /
    • 2004
  • Statement of Problem. Temporary soft relining materials are used in a diverse clinical situations such as tissue conditioner, relining material, functional impression by varying its viscoelasticity. However, reproduction of consistent viscoelasticity has been not possible. Materials and methods. Considering setting mechanism of this material, this study has measured the effect of varying amount of void in dynamic viscoelasticity of soft relining material, with three different mixing methods. In each methods 10 specimens were made and subjected to dynamic viscoelastic test which were measured at specific times over period of 72 hours. Results. The analysis of the result shown that there was no statistically significant differences between different mixing methods. Conclusion. Different mixing methods had no effect over control of viscoelasticity of soft lining material. Further research is recommended for under similar oral environmental condition.

The Effects of Thermocycling on the Shear Bond Strength between Metal Denture Base and Relining Resin (Thermocycling이 첨상용 레진과 금속 의치상간의 전단결합강도에 미치는 영향)

  • Lee, Joon-seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2005
  • Purpose: Recently, various metal primers have been developed, and these are known to increase the bond strength between metal and relining resin. In this study, the change in bond strength according to amount of thermocycling was evaluated. Materials and Methods: In this study, 216 specimens were fabricated. Tokuyama Rebase $II^{(R)}$(Tokuyama Corp., Japan) and $Kooliner^{(R)}$(GC America Inc., Japan) as relining material, and MR. $Bond^{(R)}$(Tokuyama Corp., Japan) and Alloy $Primer^{(R)}$(Kuraray Medical Inc., Japan) as a metal primers were used. Using Ni-Cr and various metal surface treatment methods, resin was bonded and the change in bond strength during thermocycling was measured. The data was analyzed by one-way ANOVA, t-test(p<.05 level of significance). Results: When comparing the groups with only sandblasting, rapid decrease in shear bond strength could be seen. In the groups using Tokuyama Rebase $II^{(R)}$, with the exception of the 1000 and 2000 cycle groups, each group showed statistically significant decrease in shear bond strength(p<0.05). In comparison according to relining materials, $Kooliner^{(R)}$ showed higher shear bond strength than Tokuyama Rebase $II^{(R)}$ in all groups. In groups using MR $bond^{(R)}$, $Kooliner^{(R)}$ had higher shear bond strength than Tokuyama Rebase $II^{(R)}$ but, there was no statistical significance(p<0.05). In the other groups, $Kooliner^{(R)}$ showed significantly higher shear bond strength(p<0.05). There was significant difference between groups with sandblasting and metal primer treatments(p<0.05). In comparison according to metal primer materials, Alloy $Primer^{(R)}$ showed the highest shear bond strength but there was no statistical significance(p>0.05). According to the number of thermocycling cycles, when using Tokuyama Rebase $II^{(R)}$, there were no significant differences between the 0, 1000 and 2000 cycle groups regardless of the type of metal primer. There were no differences between the 2000 and 3000 cycle groups. When using $Kooliner^{(R)}$, regardless of the type of metal primer, there were no significant differences between the 0, 1000, 2000 and 3000 cycle groups(p>0.05). Conclusion: The use of metal primers showed increase in bond strength, and the stability after to thermocycling has been authenticated. Thus, the use of metal primers in relining and rebasing of metal frameworks is essential. But when selecting the material various physical properties should be considered.

Nonthermal plasma on the shear bond strength of relining resin to thermoplastic denture base resin (열가소성 의치상 레진과 첨상용 레진의 접착 강도에 저온플라즈마가 미치는 효과)

  • Manaloto-Ceballos, Liezl;Labriaga, Wilmart;Song, So-Yeon;Park, Jin-Hong;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.199-205
    • /
    • 2018
  • Purpose: This study evaluated the effect of nonthermal plasma treatment on the bond strength of autopolymerizing relining resin to the injection molded thermoplastic denture base resins (TDBRs) with different surface treatments. Materials and methods: Acrylic Resin (Acrytone), Polyester (Estheshot-Bright), Polyamide (Valplast) and Polypropylene (Weldenz) were subjected to various surface treatments: No treatment, Nonthermal plasma, Sandblasting, Sandblasting and nonthermal plasma. Specimens were bonded using an autopolymerizing relining resin. Shear bond strength was tested using universal testing machine with crosshead speed of 1 mm/min. Statistical analysis by two-way analysis of variance with Tukey's test post hoc was used. Results: Acrytone showed significantly higher shear bond strength value among other TDBR group while Weldenz had the lowest. The sandblasting and nonthermal plasma condition had significantly higher shear bond strength value in all of the resin groups (P < .05). Conclusion: The use of nonthermal plasma treatment showed limited effect on the shear bond strength between TDBRs and relining resin, and combination of nonthermal plasma and sandblasting improved the shear bond strength between TDBR and reline material.

A STUDY ON THE EFFECT OF THERMOCYCLING TO THE PHYSICAL PROPERTIES OF DENTURE LINERS (열 순환에 따른 의치이장채의 물리적 성질의 변화에 관한 연구)

  • Lee Dong-Su;Lim Heon-Song;Lim Ju-Hwan;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.556-575
    • /
    • 2001
  • For the improvement of denture fitness of changed residual ridge, denture liner can be used. Denture liner should be very stable physically in various environments of the mouth as well as be bonded strongly with denture resin. In this study. the specimens bonded with four kinds of soft denture liner and three kinds of hard denture liner were used to test the physical properties of the liners. All experimental groups were stored in $37{\pm}1^{\circ}C$ distilled water for 24hours, followed by thermocycling between $15^{\circ}C$ and $45^{\circ}C$ with 15 second dwell time. 1000, 2000, 3000 cycles of thermocycling were excuted and physical properties were measured by Instron Universal Testing Machine. The obtained results were as follows : 1. In tensile bond test of sea liners, it was shown that both of $Molloplast-B^{(R)}$ specimens before and after thermocycling had the highest tensile strength, and in case of hard liners, Dura-Liner $II^{(R)}$ specimen had the highest tensile strength before and after thermocycling. Depending on thermocycling, $Soft-Relining^{(R)}$, $Denture-Relining^{(R)}$, $Molloplast-B^{(R)}$, $Coe-Soft^{(R)}$ and $Kooliner^{(R)}$ specimen showed significant difference(p<0.05). 2. In strain test of soft liners, it was shown that $Molloplast-B^{(R)}$ specimen before thermocycling and the $Coe-Soft^{(R)}$ after thermocycling showed highest results, and in case of hard liners, the Dura-Liner $II^{(R)}$ specimen before and after thermocycling had the highest result. Depending on thormocycling, $Denture-Relining^{(R)}$, $Molloplast-B^{(R)}$ and Dura-Liner $II^{(R)}$ specimen showed significant difference(p<0.05). 3. In maximum distance test of soft liners. the $Molloplast-B^{(R)}$ specimen before thermocycling and the $Coe-Soft^{(R)}$ after thermocycling showed highest results. and in case of hard liners, the Dura-Liner $II^{(R)}$ specimen before and after thermocycling showed highest result. Depending on thermocycling, $Denture-Relining^{(R)}$, $Molloplast-B^{(R)}$ specimens showed significant difference(p<0.05). 4. In elasticity test of soft liners, the $Molloplast-B^{(R)}$ specimen before and after thermocycling showed highest result. and in case of hard liners, the Dura-Liner $II^{(R)}$ specimen before thermocycling and the $Tokuso-Rebase^{(R)}$ after thermocycling showed highest results. Depending on thermocycling, $Soft-Relining^{(R)}$ $Molloplast-B^{(R)}$ specimens showed significant difference (p<0.05).

  • PDF