• 제목/요약/키워드: reline

검색결과 29건 처리시간 0.024초

Effect of denture cleansers on Candida albicans biofilm formation over resilient liners

  • Huh, Jung-Bo;Lim, Younghun;Youn, Hye-In;Chang, Brian Myung;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권2호
    • /
    • pp.109-114
    • /
    • 2014
  • PURPOSE. The purpose of this study was to analyze the effect of denture cleansers on Candida albicans biofilm formation over resilient liners and to evaluate compatibility between resilient liners and denture cleansers. MATERIALS AND METHODS. Acrylic resin (Lucitone 199$^{(R)}$) and 3 resilient liners (COE-SOFT$^{TM}$, GC RELINE$^{TM}$ and SOFRELINER TOUGH TOUGH$^{(R)}$) were incubated in denture cleansers (Polident$^{(R)}$ and Cleadent$^{(R)}$) for 8 hours a day and in unstimulated saliva for 16 hours a day (n=25/gp) for 60 days. Two-way and three-way repeated measures ANOVA were performed to compare the surface roughness (Ra), pH and C. albicans binding level by radioisotope (${\alpha}$=0.05). The statistical significance of the relation between Ra and adhesion was evaluated by correlation analysis. RESULTS. The degree of Ra was significantly decreased in the following order: COE-SOFT$^{TM}$, acrylic resin, GC RELINE$^{TM}$ and SOFRELINER TOUGH$^{(R)}$. The immersion in denture cleansers significantly increased Ra of resilient liners, except for SOFRELINER TOUGH$^{(R)}$ in Cleadent$^{(R)}$. No significant differences in pH curves were observed among groups immersed in distilled water and denture cleansers. The binding levels of C. albicans were significantly decreased in the following order: COE-SOFT$^{TM}$, GC RELINE$^{TM}$, SOFRELINER TOUGH$^{(R)}$, and acrylic resin. The immersion in Cleadent$^{(R)}$ seemed to decrease C. albicans binding level on GC RELINE$^{TM}$ and SOFRELINER TOUGH$^{(R)}$. CONCLUSION. Based on the C. albicans binding levels results, it is not recommended to immerse COE-SOFT$^{TM}$ in denture cleansers, and GC RELINE$^{TM}$ and SOFRELINER TOUGH$^{(R)}$ should be immersed in Cleadent$^{(R)}$.

의치상 레진에 대한 개상용 레진의 결합 강도에 관한 연구 (THE BOND STRENGTH OF REBASE RESIN TO DENTURE BASE RESIN)

  • 김일평;조혜원;진태호
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.515-522
    • /
    • 1993
  • The purpose of this study was to evaluate the bond strength of rebase resin to denture base resin. The denture base resins in this study were Premium Super-20(Lang Dental Mfg. Co. Inc., Wheeling, USA) and Lucitone 199(Dentsply International Inc., York, USA). And the rebase resins were Repair Acrylic(Lang Dental Mfg. Co. Inc., Wheeling USA). Toughron Rebase(Miki Chemical Product Co. Ltd., Japan) , Tokuso Rebase(Tokuyama Soda. Co. Ltd., Japan) and Triad VLC Reline Material(Dentsply International Inc., York, USA). The obtained results were as follows : 1. The bond strength of Repair Acrylic to Premium Super-20, and that of Toughron Rebase to Lucitone 199 were the highest. 2. In Premium Super-20 and Lucitone 199, bond strength of all rebase resins had significant differences. 3. The bond strength of Triad VLC Reline Material was inclined to the lowset.

  • PDF

의치상 수리면 오염원에 따른 수지의 결합강도 (Bond strength of denture base resin repaired according to contamination)

  • 정경풍
    • 대한치과기공학회지
    • /
    • 제25권1호
    • /
    • pp.71-79
    • /
    • 2003
  • The purpose of this study was to investigate bond strength of denture base resin repaired according to contamination. One commercial denture base resin and two different kinds of relines resin were tested; Lusiton 199(denture base resin), Vertex(reline resin) and TokusoRebase(repair resin). The specimens were processed according to the manufacturer's instructions to cured denture base resin(polymethylmethacrylate; PMMA) and reline resin. Bond strengths were examined by use of a three-point transverse flexural strength test. Data were analyzed with two-factor analysis of variance and Duncan's post-hoc test at $\alpha$=0.05. Generally, the bondstrength of heat-cured resin(Lusiton 199) was higher than the other resins. The contaminations produced an decrease in bond strength. Therefore the contamination, such as saliva or water must be avoided during the laboratory repair procedures.

  • PDF

커피에 의한 의치상 레진의 색 변화에 관한 연구 (THE COLOR CHANCE OF DENTURE BASE RESINS BY COFFEE)

  • 한상훈;동진근;진태호
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.523-531
    • /
    • 1993
  • The purpose of this study was to investigate the color change of denture base resins by coffee. Denture base resins for this study were Triad VLG Denture Base (Dentsply, York Div. U.S.A.), Premium Super-20 (Lang Dental Mfg. Co., Inc., U.S.A.) for denture base, Toughron Rebase (Miki Chemical Prod., Kyoto, Japan), Jet Repair Acrylic (Lang Dental Mfg. Co., Inc., U.S.A.), Triad Reline (Dentsply, fork Div. U.S.A.) and Tokuso Rebase (Tokuyama Soda Co., Ltd., Japan) for denture rebase. Twenty specimens of each denture base resin were made and polished. The color of specimens was measured by colorimeter (Model Tc-6FX, Tokyo Denshoku Co. Japan), and they were stored in coffee for three weeks and then color changes were measured. The obtained results were as follows : 1. The L*, a*, b* and the E*ab values of all denture base resins were changed after three weeks. 2. The amount of color change on L*, a*, b* and the E*ab value of each specimens showed different patterns. 3. The b* values of Triad Reline materials were changed more than the other materials. 4. The E*ab values of Triad Denture Base materials were changed more than the other materials.

  • PDF

의치 수리용 레진의 색안정성과 결합강도에 관한 연구 (A STUDY ON THE COLOR STABILITY AND SHEAR BOND STRENGTH OF DENTURE REPAIR RESINS)

  • 진태호
    • 대한치과보철학회지
    • /
    • 제33권1호
    • /
    • pp.24-31
    • /
    • 1995
  • This study was performed to investigate the color stability and shear bond strength of denture repair resins. The denture base resins used in this study were Premium Super-20(Lang Dental Mfg. Co., Inc.,.U.S.A.) as heat curing resin, Triad VLC Denture Base(Dentsply/York Division, U.S.A.), Triad Reline Material(Dentsply/York Division, U.S.A.), Repair Acrylic(Lang Dental Mfg. Co., Inc.,. U.S.A.), Toughron Rebase (MikiChemical Product, Kyoto, Japan), and Tokuso Rebase(Tokuyama Soda Co., Ltd., Japan) as denture repair resin. After fabrication of specimens, they stored for 20 months, then color changes and shear bond strength were measured by colorimeter(Model TC-6FX, Tokyo Denshoku Co.) and Instron Universial Test Machine. The results were as follows : 1. There were changes of $L^{\ast},\;a^{\ast},\;b^{\ast}$ and $DE^{\ast}$ in Triad VLC Denture Base after 20 months. 2. There were changes of $a^{\ast}$ in Toughron Rebase and Tokuso Rebase, and $b^{\ast}$ in Tokuso Rebase after 20 months. 3. The shear bond strength of Repair Acrylic and Toughron Rebase were higher than that of Tokuso Rebase and Triad Reline Material.

  • PDF

총의치의 유지관리 (Maintenance of complete denture)

  • 송영균
    • 대한치과의사협회지
    • /
    • 제55권1호
    • /
    • pp.90-95
    • /
    • 2017
  • As residual ridge resorption occurs, complete dentures tend to become loose. Denture relining and rebasing are an essential element for improving a denture's stability and prevention side effect such as sore spot, epulis fissuratum. This paper focuses about health insurance is available for maintenance of complete denture and, methods of relining or rebasing.

  • PDF

의치상 레진과 이장 레진 간의 결합강도 비교 (Comparison of bond strength between denture base resin and reline resin)

  • 금영희;김부섭
    • 대한치과기공학회지
    • /
    • 제39권3호
    • /
    • pp.161-167
    • /
    • 2017
  • Purpose: We compare the bond strength of heat-cured PMMA of Lucitone 199 and QC-20 and Tokuyama Rebase Resin of self-cured resin, which are widely used and well accepted in clinical practice. In order to test the mechanical bonding and chemical bonding, we will compare the bond strength between EstheShot Bright, Smiletone, Repair and Rebase resins. Methods: The denture base resin used in this study was PMMA heat-cured QC-20 and Lucitone 199, polyamide resin EstheShot Bright, Smiletone. And Two types of self-curing Rapid Repair and Tokuyama Rebase were used as resection resins. To measure the bond strength, the denture specimens were fabricated in the size of $10{\times}64{\times}3.5mm$ as instructed by the manufacturer. A surface treatment agent was applied to the cut surfaces of each denture specimen, and the specimens were placed in a preformed silicone mold, and autoclaved excimer resins were prepared. The bending strength of the fabricated specimens was measured using a universal testing machine (STM-5, United Calibration Co., U.S.A.) to measure the three-point bending strength. Results: In both polycarbonate and polyacetal resin, a special resin surface treatment agent showed higher bonding strength than the resin surface treatment agent(p<0.05). Regardless of the type of surface treatment, polycarbonate showed higher bond strength than polyacetal resin(p<0.05). Conclusion: It is considered desirable to use a special surface treating agent for the thermoplastic denture base resin such as polycarbonate and polyacetal resin.

Wettability of denture relining materials under water storage over time

  • Jin, Na-Young;Lee, Ho-Rim;Lee, Hee-Su;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권1호
    • /
    • pp.1-5
    • /
    • 2009
  • STATEMENT OF PROBLEM. Poor wettability of denture relining materials may lead to retention problems and patient discomfort. PURPOSE. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. MATERIAL AND METHODS. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate(PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate(PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, $Mollosil^{{R}}$ plus, Sofreliner Touch, GC $Reline^{TM}$ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system(DSA 10-MK2, KRUESS, Germany) under three conditions(in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition(Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis($\alpha$=0.01). RESULTS. Contact angles of materials tested after air and water storage increased in the following order: Group 1(PMMA), Group 2(PEMA), Group 3(Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and $Mollosil^{{R}}$ plus, increased after 24 hours of water storage. CONCLUSIONS. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.