• Title/Summary/Keyword: reliability prediction

Search Result 1,201, Processing Time 0.029 seconds

Geomagnetic Paleosecular Variation in the Korean Peninsula during the First Six Centuries (기원후 600년간 한반도 지구 자기장 고영년변화)

  • Park, Jong kyu;Park, Yong-Hee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.611-625
    • /
    • 2022
  • One of the applications of geomagnetic paleo-secular variation (PSV) is the age dating of archeological remains (i.e., the archeomagnetic dating technique). This application requires the local model of PSV that reflects non-dipole fields with regional differences. Until now, the tentative Korean paleosecular variation (t-KPSV) calculated based on JPSV (SW Japanese PSV) has been applied as a reference curve for individual archeomagnetic directions in Korea. However, it is less reliable due to regional differences in the non-dipole magnetic field. Here, we present PSV curves for AD 1 to 600, corresponding to the Korean Three Kingdoms (including the Proto Three Kingdoms) Period, using the results of archeomagnetic studies in the Korean Peninsula and published research data. Then we compare our PSV with the global geomagnetic prediction model and t-KPSV. A total of 49 reliable archeomagnetic directional data from 16 regions were compiled for our PSV. In detail, each data showed statistical consistency (N > 6, 𝛼95 < 7.8°, and k > 57.8) and had radiocarbon or archeological ages in the range of AD 1 to 600 years with less than ±200 years error range. The compiled PSV for the initial six centuries (KPSV0.6k) showed declination and inclination in the range of 341.7° to 20.1° and 43.5° to 60.3°, respectively. Compared to the t-KPSV, our curve revealed different variation patterns both in declination and inclination. On the other hand, KPSV0.6k and global geomagnetic prediction models (ARCH3K.1, CALS3K.4, and SED3K.1) revealed consistent variation trends during the first six centennials. In particular, the ARCH3K.1 showed the best fitting with our KPSV0.6k. These results indicate that contribution of the non-dipole field to Korea and Japan is quite different, despite their geographical proximity. Moreover, the compilation of archeomagnetic data from the Korea territory is essential to build a reliable PSV curve for an age dating tool. Lastly, we double-check the reliability of our KPSV0.6k by showing a good fitting of newly acquired age-controlled archeomagnetic data on our curve.

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.

Estimating the Size Effect on Relative Species Number in Macrobenthic Community (대형 저서동물 군집의 채집 면적이 상대적 출현 종수에 갖는 효과의 추정)

  • 유재원;김창수;박미라;이형곤;이창근;이재학;홍재상
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.1
    • /
    • pp.20-29
    • /
    • 2004
  • Macrobenthos species-area relationship was investigated and empirical models were estimated to enable comparisons among species numbers of different sample size. The study aims to choose a way to predict cumulative relative species number (CRSN) in a given sample size Saemangeum, located in the west coast of South Korea, were visited in Apr., May and Aug.,2002 and a total of 261 biological samples from 87 stations were obtained by employing a quantitative sediment sampler, Smith-McIntyre grab and design of 3 replicates at each station. Relative species numbers (%) were baselined at sample size of 1000 $\textrm{cm}^2$ and the patterns of CRSN along the axis of sample size were measured and observed. In correlation analysis performed on a set of abiotic and biotic variables, log-transformed CRSN showed the only significant relationship with log-transformed density. Based on the result, three models, Log CRSN 2000, Log CRSN 3000 and Log CRSN were produced. The former two were devised to predict CRSN at 2000 and 3000 $\textrm{cm}^2$ respectively, and the latter at various sample sizes and samplers (all p-values were <0.001). Database from other studies (intertidal or subtidal macrofaunal samples from Kyonggi Bay and Saemangeum) were used to evaluate validity of the models. Observed CRSN below sample size of 3000 $\textrm{cm}^2$ fell under the range of 95% prediction interval and this was appeared to provide reliability of the models below that sample size.

Transformation of Dynamic Loads into Equivalent Static Load based on the Stress Constraint Conditions (응력 구속조건을 고려한 동하중의 등가정하중으로의 변환)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • Due to the difficulty in considering dynamic load in the view point of a computer resource and computing time, it is common that external load is assumed as ideal static loads. However, structural analysis under static load cannot guarantee the safety of design of the structures under dynamic loadings. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. However, previously reported works to distribute equivalent static load were based on ad-hoc methods. Improper selection of equivalent static loading positions may results in unreliable prediction of structural design. The present study proposes the selection method of the proper locations of equivalent static loads to dynamically applied loads when we consider transient dynamic structural problems. Moreover, it is appropriate to take into account the stress constraint as well as displacement constraint condition for the safety design. But the previously reported studies of equivalent static load design methods considered only displacement constraint conditions but not stress constraint conditions. In the present study we consider not only displacement constraint but also stress constraint conditions. Through a few numerical examples, the efficiency and reliability of proposed scheme is verified by comparison of the equivalent stress between equivalent static loading and dynamic loading.

Temperature Prediction of Cylinder Components in Medium-Speed Diesel Engine Using Conjugate Heat Transfer Analysis (복합 열전달 해석을 이용한 중속 디젤엔진 실린더 부품 온도 분포 예측)

  • Choi, Seong Wook;Yoon, Wook Hyoen;Park, Jong Il;Kang, Jeong Min;Park, Hyun Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.781-788
    • /
    • 2013
  • Predicting the engine component temperature is a basic step to conduct structural safety evaluation in medium-speed diesel engine design. Recent trends such as increasing power density and performance necessitate more effective thermal management of the engine for achieving the desired durability and reliability. In addition, the local temperatures of several engine components must be maintained in the proper range to avoid problems such as low- or high-temperature corrosion. Therefore, it is very important to predict the temperature distribution of each engine part accurately in the design stage. In this study, the temperature of an engine component is calculated by using steady-state conjugate heat transfer analysis. A proper approach to determine the thermal load distribution on the thermal boundary area is suggested by using 1D engine system analysis, 3D transient CFD results, and previous experimental data from another developed engine model. A Hyundai HiMSEN engine having 250-mm bore size was chosen to validate the analysis procedure. The predicted results showed a reasonable agreement with experimental results.

Mobility Support Scheme Based on Machine Learning in Industrial Wireless Sensor Network (산업용 무선 센서 네트워크에서의 기계학습 기반 이동성 지원 방안)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Jung, Kwansoo;Oh, Seungmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.256-264
    • /
    • 2020
  • Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.

The Box-office Success Factors of Films Utilizing Big Data-Focus on Laugh and Tear of Film Factors (빅데이터를 활용한 영화 흥행 분석 -천만 영화의 웃음과 눈물 요소를 중심으로)

  • Hwang, Young-mee;Park, Jin-tae;Moon, Il-young;Kim, Kwang-sun;Kwon, Oh-young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1087-1095
    • /
    • 2016
  • The study aims to analyze factors of box office utilizing big data. The film industry has been increasing in the scale, but the discussion on analysis and prediction of box-office hit has not secured reliability because of failing in including all relevant data. 13 films have sold 10 million tickets until the present in Korea. The study demonstrated laughs and tears as an main interior factors of box-office hit films which showed more than 10 milling tickets power. First, the study collected terms relevant to laugh and tear. Next, it schematizes how frequently laugh and tear factors could be found along the 5-film-stage (exposition - Rising action - crisis - climax - ending) and revealed box-office hit films by genre. The results of the analysis would contribute to the construction of comprehensive database for the box office predictions on future scenarios.

Uncertainty of Agrometeorological Advisories Caused by the Spatiotemporally Averaged Climate References (시공간평균 기준기후에 기인한 농업기상특보의 불확실성)

  • Kim, Dae-jun;Kim, Jin-Hee;Kim, Soo-Ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.120-129
    • /
    • 2017
  • Agrometeorological advisories for farms and orchards are issued when daily weather exceeds a predefined range of the local reference climate, which is a long-term average of daily weather for the location. The reference climate at local scales is prepared by various simplification methods, resulting in uncertainty in the agrometeorological advisories. We restored daily weather data for the 1981-2010 period and analyzed the differences in prediction results of weather risk by comparing with the temporal and spatial simplified normal climate values. For this purpose, we selected the agricultural drought index (ADI) among various disaster related indices because ADI requires many kinds of weather data to calculate it. Ten rural counties within the Seomjin River Basin were selected for this study. The normal value of 'temporal simplification' was calculated by using the daily average value for 30 years (1981-2010). The normal value of 'spatial simplification' is the zonal average of the temporally simplified normal values falling within a standard watershed. For residual moisture index, temporal simplification normal values were overestimated, whereas spatial simplification normal values were underestimated in comparison with non-simplified normal values. The ADI's calculated from January to July 2017 showed a significant deviation in terms of the extent of drought depending on the normal values used. Through this study, we confirmed that the result of weather risk calculation using normal climatic values from 'simplified' methods can affect reliability of the agrometeorological advisories.

A Prediction of the Penetration Depth on CO2 Arc Welding of Steel Sheet Lap Joint with Fillet for Car Body using Multiple Regression Analysis Technique (자동차용 박강판 겹치기 이음부의 CO2 아크 용접에서 다중회귀분석기법을 이용한 용입깊이 예측에 대한 연구)

  • Lee, Kyung-Min;Sim, Hyun-Woo;Kwon, Jae-Hyung;Yoon, Buk-Dong;Jeong, Min-Ki;Park, Moon-Soo;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.59-64
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body are spot welding and $CO_2$ welding are used in a small part. In production field, $CO_2$ welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ welding process frequently. But $CO_2$ welding process should be used at robot interference parts and closed parts where spot welding couldn't. Because of the 0.65mm ~ 2.0mm thickness steel sheet were used in the automotive industry, poor quality of welding area such as burn through and under fill were happened frequently in $CO_2$ process. In this paper, we will study about the penetration depth which gives a huge impact on burn through changing a degree of base metal, welding position and torch angle. Voltage, current and welding speed were fixed but degree of base metal, welding position and torch angle were changed. And Cold- Rolled(CR) steel sheet was used. Penetration depth was analysed by multiple regression analysis to derive approximate calculations. And reliability of approximate calculations were confirmed through additional experiments. As the results of this research, we confirmed the effect of torch and plate angle to bead shape. And we present a possibility that can simulate more accurate to weld geometry, as deduced the verification equations that has tolerance of less than 21.69%.

A Theoretical Review on the Natural Family Planning Method (자연적 가족계획 방법에 대한 이론적 고찰)

  • Park, Shin-Ae
    • Research in Community and Public Health Nursing
    • /
    • v.7 no.2
    • /
    • pp.410-419
    • /
    • 1996
  • This study was reviewed from 1000 articles related to family planning from 1970 to 1990 and 20 articles associated with natural family planning from 1980 until the present. The purpose of natural family planning(NFP) is to identify the time ovulation of women themselves, to have intercourse with periodic abstinence, and to deliver a healthy child. The ultimate goal of NFP is to promote the family's health. The NFP method is described as periodic abstinence of intercourse to avoid pregnancy by identifying the ovulation time in the menstration cycle. Clinical symptoms and signs of reflection underlying changes in Estrogen and Progesterone are the change of basal body temperature, the change of cervical mucus and cervix, abdominal pain and breast tenderness. The types of NFP are the calender rthythm method, basal body temperature methods, cervical mucus method, symptothermal method, cyclo-thermal method and home based ovulation test kits. Recently the cyclo-thermal method involved. It is calendar rhythm method applied to B.B.T. For the cervical mucus method, when the estrogen level in the blood concentration is increased, the mucus begins to excrete, the amount of moist mucus increases while the mucus is clear, slippery, and smooth. For 3 days, this timing can be considered contraception. Fertility is at a maximum on the day mucus appears, abstinence for 3 days is a type of contraception. Sexual intercourse on a maximum day of mucus maximizes pregnancy potential. But, the contraception depends on the practice of a perfect rule. For basal body temperature methods, at ovulation time, the temperature increases $0.2^{\circ}C-0.5^{\circ}C$. Through the review of literature a high temperature above $0.2^{\circ}C$ for 3 days indicates that the previous 6 day period was ovulation and fertilization. The Symptothermal method is used to determine the prediction of ovulation through the observation of mucus excretion, high temperature, the change of cervical mucus, low abdominal pain, vaginal discharge, and breast change. Home based ovulation test kits are cervico-vaginal fluid aspiration, test a digital electric thermometer, body fluid(blood, saliva, urine) test kits, They are on the market. However, research on the contraception method is still in progress. For pregnancy it is still too early to use home based ovulation test kits because of deficit of reliability and simplicity more research on the technology is needed. It is suggested that NFP methods be included in nursing curriculum in order to educate NFP users how to effectively use NFP methods. Furthermore, this study has implications for the dissemination of NFP methods in terms of Korean policies of family planning and the support of community welfare agences.

  • PDF