• 제목/요약/키워드: reliability methods

Search Result 4,757, Processing Time 0.027 seconds

Comparison of Reliability Estimation Methods for Ammunition Systems with Quantal-response Data (가부반응 데이터 특성을 가지는 탄약 체계의 신뢰도 추정방법 비교)

  • Ryu, Jang-Hee;Back, Seung-Jun;Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.982-989
    • /
    • 2010
  • This paper shows accuracy comparison results of reliability estimation methods for one-shot systems such as ammunitions. Quantal-response data, following a binomial distribution at each sampling time, characterizes lifetimes of one-shot systems. Various quantal-response data of different sample sizes are simulated using lifetime data randomly sampled from assumed weibull distributions with different shape parameters but the identical scale parameter in this paper. Then, reliability estimation methods in open literature are applied to the simulated quantal-response data to estimate true reliability over time. Rankings in estimation accuracy for different sample sizes are determined using t-test of SSE. Furthermore, MSE at each time, including both bias and variance of estimated reliability metrics for each method are analyzed to investigate how much both bias and variance contribute the SSE. From the MSE analysis, MSE provides reliability estimation trend for each method. Parametric estimation method provides more accurate reliability estimation results than the other methods for most of sample sizes.

A Comparative Study on Structural Reliability Analysis Methods (구조 신뢰성 해석방법의 고찰)

  • 양영순;서용석
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.109-116
    • /
    • 1994
  • In this paper, various reliability analysis methods for calculating a probability of failure are investigated for their accuracy and efficiency. Crude Monte Carlo method is used as a basis for the comparison of various numerical results. For the sampling methods, Importance Sampling method and Directional Simulation method are considered for overcoming a drawback of Crude Monte Carlo method. For the approximate methods, conventional Rackwitz-Fiessler method. 3-parameter Chen-Lind method, and Rosenblatt transformation method are compared on the basis of First order reliability method. As a Second-order reliability method, Curvature-Fitting paraboloid method, Point-fitting paraboloid method, and Log-likelihood function method are explored in order to verify the accuracy of the reliability calculation results. These methods mentioned above would have some difficulty unless the limit state equation is expressed explicitly in terms of random design variables. Thus, there is a need to develop some general reliability methods for the case where an implicit limit state equation is given. For this purpose, Response surface method is used where the limit state equation is approximated by regression analysis of the response surface outcomes resulted from the structural analysis. From the application of these various reliability methods to three examples, it is found that Directional Simulation method and Response Surface method are very efficient and recommendable for the general reliability analysis problem cases.

  • PDF

The Effect of Scale Parameter in Designing Reliability Demonstration Test for Lognormal Lifetime Distribution (대수정규 수명분포를 갖는 제품에 대한 신뢰성 입증시험에서 척도모수의 영향분석)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.53-57
    • /
    • 2014
  • In the fields of reliability application, the most commonly used test methods for reliability demonstration are zero-failure acceptance tests since they require fewer test samples and less test time compared to other test methods that guarantee the same reliability with a given confidence level. For products with lognormal lifetime distribution, the value of scale parameter is usually assumed to be known in designing reliability demonstration tests. It is important to select correct values of scale parameters to guarantee the specified reliability with given confidence level exactly. The effect of using wrong values of scale parameters in designing reliability demonstration test for products with lognormal lifetime distribution is examined and selecting proper values of scale parameters for conservative reliability demonstration is discussed.

The Effect of Shape Parameters in Designing Reliability Qualification Test for Weibull lifetime distribution (와이불수명분포를 갖는 제품의 신뢰성인증시험에서 형상모수의 영향분석)

  • Kwon, Young-Il
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • In the fields of reliability application, the most commonly used test methods for reliability qualification are zero-failure acceptance tests since they require fewer test samples and less test time compared to other test methods that guarantee the same reliability with a given confidence level. Usually values of shape parameters are assumed to be known in designing reliability qualification tests for Weibull lifetime distribution. It is important to select correct values of shape parameters to guarantee the specified reliability with given confidence level exactly. The effect of using wrong values of shape parameters in designing reliability qualification test for products with Weibull lifetime distribution is examined and selecting proper values of shape parameters for conservative reliability qualification is discussed.

Evaluating and improving system reliability of bridge structure using gamma distribution

  • Mustaf, Abdelfattah;El-Desouky, Beih S.;Taha, Ahmed
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.121-135
    • /
    • 2016
  • In this paper, we study a system of five components. One of them is a bridge network component. Each of these components is identical and has a failure rate as a function of time. The system components have non-constant failure rates. The given system is improved by using the reduction, hot duplication, and cold duplication methods. We derive the equivalence factors of the bridge structure system to be as another system improved according to these different methods. The ${\beta}-fractiles$ are obtained to compare the original system with these improved systems. Finally, we present numerical results to show the difference between these methods.

A general active-learning method for surrogate-based structural reliability analysis

  • Zha, Congyi;Sun, Zhili;Wang, Jian;Pan, Chenrong;Liu, Zhendong;Dong, Pengfei
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.167-178
    • /
    • 2022
  • Surrogate models aim to approximate the performance function with an active-learning design of experiments (DoE) to obtain a sufficiently accurate prediction of the performance function's sign for an inexpensive computational demand in reliability analysis. Nevertheless, many existing active-learning methods are limited to the Kriging model, while the uncertainties of the Kriging itself affect the reliability analysis results. Moreover, the existing general active-learning methods may not achieve a fully satisfactory balance between accuracy and efficiency. Therefore, a novel active-learning method GLM-CM is constructed to yield the issues, which conciliates several merits of existing methods. To demonstrate the performance of the proposed method, four examples, concerning both mathematical and engineering problems, were selected. By benchmarking obtained results with literature findings, various surrogate models combined with the proposed method not only provide an accurate reliability evaluation while highly alleviating the computational burden, but also provides a satisfactory balance between accuracy and efficiency compared to the other reliability methods.

Exploring Reliability of Wood-Plastic Composites: Stiffness and Flexural Strengths

  • Perhac, Diane G.;Young, Timothy M.;Guess, Frank M.;Leon, Ramon V.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.2
    • /
    • pp.153-173
    • /
    • 2007
  • Wood-plastic composites (WPC) are gaining market share in the building industry because of durability/maintenance advantages of WPC over traditional wood products and because of the removal of chromated copper arsenate (CCA) pressure-treated wood from the market. In order to ensure continued market share growth, WPC manufacturers need greater focus on reliability, quality, and cost. The reliability methods outlined in this paper can be used to improve the quality of WPC and lower manufacturing costs by reducing raw material inputs and minimizing WPC waste. Statistical methods are described for analyzing stiffness (tangent modulus of elasticity: MOE) and flexural strength (modulus of rupture: MOR) test results on sampled WPC panels. Descriptive statistics, graphs, and reliability plots from these test data are presented and interpreted. Sources of variability in the MOE and MOR of WPC are suggested. The methods outlined may directly benefit WPC manufacturers through a better understanding of strength and stiffness measures, which can lead to process improvements and, ultimately, a superior WPC product with improved reliability, thereby creating greater customer satisfaction.

  • PDF

Reliability analysis methods to one-shot device (일회용품의 신뢰성분석 방안)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • There are many one-shot devices that are used once and thrown away. One-shot devices such as firecrackers and ammunition are typical, and they are stored for a while after manufacture and then disposed of after use when necessary. However, unlike general operating systems, these one-shot devices have not been properly evaluated. This study first examines what the government does to secure reliability in the case of ammunition through ammunition stockpile reliability program. Next, in terms of statistical analysis, we show what the reliability analysis methods are for one-shot devices such as ammunition. Specifically, we show that it is possible to know the level of reliability if sampling inspection plan such as KS Q 0001 which is acceptance sampling plan by attributes is used. Next, non-parametric and parametric methods are introduced as ways to determine the storage reliability of ammunition. Among non-parametric methods, Kaplan-Meier method can be used since it can also handle censored data. Among parametric methods, Weibull distribution can be used to determine the storage reliability of ammunition.

Sensitivity analysis of reliability estimation methods for attribute data to sample size and sampling points of time (계수형 데이터에 대한 신뢰도 추정방법의 샘플 수와 샘플링 시점 수에 따른 민감도 분석)

  • Son, Young-Kap;Ryu, Jang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.581-587
    • /
    • 2011
  • Reliability estimation methods using attribute data are widely used in reliability evaluation of various systems such as nuclear energy plants, food and drug, and space launch vehicles. This paper shows sensitivity analysis and comparison results of reliability estimation methods including a parametric estimation method in open literature with respect to both sample size and sampling points of time. And ways to improve accuracy of each reliability estimation method were proposed from the sensitivity analysis results.

Study of the Efficient Aerodynamic Shape Design Optimization Using the Approximate Reliability Method (근사신뢰도기법을 이용한 효율적인 공력 형상 설계에 관한 연구)

  • Kim Suwhan.;Kwon Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.187-191
    • /
    • 2004
  • The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods. To overcome the computational inefficiency of RBDO, single loop methods have been proposed. These need less function calls than that of RBDO but much more than that of DO. In this study, the approximate reliability method is proposed that the computational requirement is nearly the same as DO and the reliability accuracy is good compared with that of RBDO. Using this method, the 3-D viscous aerodynamic shape design optimization with uncertainty is performed very efficiently.

  • PDF