• Title/Summary/Keyword: reliability method

Search Result 8,358, Processing Time 0.035 seconds

How to Use an Optimization-Based Method Capable of Balancing Safety, Reliability, and Weight in an Aircraft Design Process

  • Johansson, Cristina;Derelov, Micael;Olvander, Johan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.404-410
    • /
    • 2017
  • In order to help decision-makers in the early design phase to improve and make more cost-efficient system safety and reliability baselines of aircraft design concepts, a method (Multi-objective Optimization for Safety and Reliability Trade-off) that is able to handle trade-offs such as system safety, system reliability, and other characteristics, for instance weight and cost, is used. Multi-objective Optimization for Safety and Reliability Trade-off has been developed and implemented at SAAB Aeronautics. The aim of this paper is to demonstrate how the implemented method might work to aid the selection of optimal design alternatives. The method is a three-step method: step 1 involves the modelling of each considered target, step 2 is optimization, and step 3 is the visualization and selection of results (results processing). The analysis is performed within Architecture Design and Preliminary Design steps, according to the company's Product Development Process. The lessons learned regarding the use of the implemented trade-off method in the three cases are presented. The results are a handful of solutions, a basis to aid in the selection of a design alternative. While the implementation of the trade-off method is performed for companies, there is nothing to prevent adapting this method, with minimal modifications, for use in other industrial applications.

Reliability Assessment by Reliability Indices Unification (신뢰도지수 종합화에 의한 배전계통 신뢰성 평가)

  • Lee, Buhm;Kim, Yong-Ha;Choi, Sang-Kyu;Lee, Hyung-Ro;Kim, Hyung-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.541-543
    • /
    • 2000
  • This paper describes the unified reliability evaluation with partial loss of continuity for complex distribution system. To evaluate reliability considering line limitation of the system, PLOC technique is employed. And reliability indices calculation method is used. Finally, Analytic network process method is employed. As a result, calculating accurate reliability, finding weak points, and expansion scheduling of the system is possible.

  • PDF

Reliability Approach to Network Reliability Using Arithmetic of Fuzzy Numbers (모호수 연산을 적용한 네트워크 신뢰도)

  • Kim, Kuk
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.103-107
    • /
    • 2014
  • An algorithm to get network reliability, where each link has probability of fuzzy number, is proposed. Decomposition method and fuzzy numbers arithmetic are applied to the algorithm. Pivot link is chosen one by one from start node recursively at time of decomposition, and arithmetic of fuzzy complementary numbers is included at the same time. No criteria of pivot link selection and the recursive calculation make the algorithm simple.

Reliability Equivalences of a Series System Consists of n Independent and Non-identical Components

  • Sarhan, A.M.;Mustafa, A.
    • International Journal of Reliability and Applications
    • /
    • v.7 no.2
    • /
    • pp.111-125
    • /
    • 2006
  • This paper introduces different vectors of the reliability equivalence factors of a series system consists of n independent and nonidentical components. The failure rates of the system components are assumed to be constant. The reliability function and mean time to failure are used as performances to derive the reliability equivalences of the system. The results presented here generalize those available in the literatures. Numerical study is given to explain how one can utilize the theoretical results obtained.

  • PDF

A Second-Order Design Sensitivity-Assisted Monte Carlo Simulation Method for Reliability Evaluation of the Electromagnetic Devices

  • Ren, Ziyan;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.780-786
    • /
    • 2013
  • In the reliability-based design optimization of electromagnetic devices, the accurate and efficient reliability assessment method is very essential. The first-order sensitivity-assisted Monte Carlo Simulation is proposed in the former research. In order to improve its accuracy for wide application, in this paper, the second-order sensitivity analysis is presented by using the hybrid direct differentiation-adjoint variable method incorporated with the finite element method. By combining the second-order sensitivity with the Monte Carlo Simulation method, the second-order sensitivity-assisted Monte Carlo Simulation algorithm is proposed to implement reliability calculation. Through application to one superconductor magnetic energy storage system, its accuracy is validated by comparing calculation results with other methods.

Reliability Evaluation of an Oil Cooler for a High-Precision Machining Center

  • Lee, Seung-Woo;Han, Seung-Woo;Lee, Hu-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.50-53
    • /
    • 2007
  • Improving the reliability or long-term dependability of a system requires a different approach from the previous emphasis on short-term concerns. The purpose of this paper is to present a reliability evaluation method for an oil cooler intended for high-precision machining centers. The oil cooler system in question is a cooling device that minimizes the deformation caused from the heat generated by driving devices. This system is used for machine tools and semiconductor equipment. We predicted the reliability of the system based on the failure rate database and conducted the reliability test using a test-bed to evaluate the life of the oil cooler. The results provided an indication of the reliability of the system in terms of the failure rate and the MTBF of the oil cooler system and its components, as well as a distribution of the failure mode. These results will help increase the reliability of oil cooler systems. The evaluation method can also be used to determine the reliability of other machinery products.

Evaluation and Planning of Distribution System Considering Reliability and Harmonics (신뢰도와 고조파를 고려한 배전시스템의 평가 및 계획)

  • Lee Buhm;Kim Yong-ha;Choi Sang-kyu
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.167-172
    • /
    • 2005
  • This paper presents a methodology to support decision making for distribution system planning based on value. To evaluate the reliability value, we employ valued-based distribution reliability assessment. To evaluate the harmonics value, we employ a marginal pricing method, and by using reliability cost, harmonics cost, and construction cost, we can make the most economic decision. By applying the method to the real system, we show this method can get the best result which meet reliability and harmonics level.

Reliability-Based Design Optimization of a Superconducting Magnetic Energy Storage System (SMES) Utilizing Reliability Index Approach

  • Jeung, Gi-Woo;Kim, Dong-Wook;Sung, Young-Hwa;Kim, Heung-Geun;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.46-50
    • /
    • 2012
  • A reliability-based optimization method for electromagnetic design is presented to take uncertainties of design parameters into account. The method can provide an optimal design satisfying a specified confidence level in the presence of uncertain parameters. To achieve the goal, the reliability index approach based on the firstorder reliability method is adopted to deal with probabilistic constraint functions and a double-loop optimization algorithm is implemented to obtain an optimum. The proposed method is applied to the TEAM Workshop Problem 22 and its accuracy and efficiency is verified with reference of Monte Carlo simulation results.

Reliability Metrics Design and Verification for the Acquisition of Small and Mid-Sized Web Application (중소규모 웹어플리케이션 개발업체 신뢰성평가를 위한 신뢰도 메트릭의 설계 및 유효성 검증)

  • Choi, Kwoung-Hee;Rhew, Sung-Yul
    • Asia pacific journal of information systems
    • /
    • v.16 no.3
    • /
    • pp.193-203
    • /
    • 2006
  • Software reliability prediction is a statistical method to put in place a timely software development practice useful for objective assessment of bidders. The current study suggests one research method that enables reliability assessment of such previous projects by studying user satisfaction and project management history. If incorporated into the existing acquisition process, the reliability assessment method will further enhance objectivity and accuracy in bidder selection process. The GQM(Goal Question Metric) paradigm was used to identify assessment metrics for bidder evaluation and questionnaires were collected from users to create user satisfaction indexes. In addition, 'weight of evidence', the most appropriate categorical method, was used to isolate attributes of each variable that may contribute to reliability assessment.

Probabilistic Damage Mechanics Assessment of Wall-Thinned Nuclear Piping Using Reliability Method and Monte-Carlo Simulation (신뢰도지수 및 몬데카를로 시뮬레이션을 이용한 원전 감육배관의 확률론적 손상역학 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1102-1108
    • /
    • 2005
  • The integrity of nuclear piping systems has to be maintained sufficiently all the times during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc, are required. Up to now, the integrity assessment has been performed using conventional deterministic approach even though there are lots of uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for piping system evaluation. The objectives of this paper are to develop a probabilistic assessment program using reliability index and simulation technique and to estimate the damage probability of wall-thinned pipes in secondary systems. The probabilistic assessment program consists of three evaluation modules which are first order reliability method, second order reliability method and Monte Carlo simulation method. The developed program has been applied to evaluate damage probabilities of wall-thinned pipes subjected to internal pressure, global bending moment and combined loading. The sensitivity analysis results as well as prototypal evaluation results showed a promising applicability of the probabilistic integrity assessment program.