• Title/Summary/Keyword: reliability estimation

Search Result 1,552, Processing Time 0.035 seconds

Comparison of Reliability Estimation Methods for One-shot Systems Using Accelerated Life Tests (가속수명시험을 이용한 원샷 시스템의 신뢰도 추정방법 비교)

  • Son, Young-Kap;Jang, Hyun-Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.4
    • /
    • pp.212-218
    • /
    • 2010
  • This paper shows accuracy comparison results of reliability estimation methods for one-shot systems with respect to sample sizes. To compare accuracy in reliability estimation methods, quantal-response data, characterizing one-shot systems, were simulated using failure times of LED obtained through the accelerated life test, and then the true reliability over time was evaluated using the failure times. The simulated quantal-response data were used to estimate the true reliability through applying reliability estimation methods in open literature. Accuracy of each reliability estimation method was compared in terms of both SSE (Sum of Squared Error) and MSE (Mean Squared Error), and then estimation trend for each method is found. Feasible bounds which true reliability would exist within were estimated through applying the found trends to quantal-response data set of a real weapon system.

Influence Analysis of Sampling Points on Accuracy of Storage Reliability Estimation for One-shot Systems (원샷 시스템의 저장 신뢰성 추정 정확성에 대한 샘플링 시점의 영향 분석)

  • Chung, Yong H.;Oh, Bong S.;Lee, Hong C.;Park, Hee N.;Jang, Joong S.;Park, Sang C.
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.32-40
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze the effect of sampling points on accuracy of storage reliability estimation for one-shot systems by assuming a weibull distribution as a storage reliability distribution. Also propose method for determining of sampling points for increase the accuracy of reliability estimation. Methods: Weibull distribution was divided into three sections for confirming the possible to estimate the parameters of the weibull distribution only some section's sample. Generate quantal response data for failure data. And performed parameter estimation with quantal response data. Results: If reduce sample point interval of 1 section, increase the accuracy of reliability estimation although sampling only section 1. Even reduce total number of sampling point, reducing sampling time interval of the 1 zone improve the accuracy of reliability estimation. Conclusion: Method to increase the accuracy of reliability estimation is increasing number of sampling and the sampling points. But apply this method to One-shot system is difficult because test cost of one-shot system is expensive. So propose method of accuracy of storage reliability estimation of one-shot system by adjustment of the sampling point. And by dividing the section it could reduce the total sampling point.

Comparison of Reliability Estimation Methods for Ammunition Systems with Quantal-response Data (가부반응 데이터 특성을 가지는 탄약 체계의 신뢰도 추정방법 비교)

  • Ryu, Jang-Hee;Back, Seung-Jun;Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.982-989
    • /
    • 2010
  • This paper shows accuracy comparison results of reliability estimation methods for one-shot systems such as ammunitions. Quantal-response data, following a binomial distribution at each sampling time, characterizes lifetimes of one-shot systems. Various quantal-response data of different sample sizes are simulated using lifetime data randomly sampled from assumed weibull distributions with different shape parameters but the identical scale parameter in this paper. Then, reliability estimation methods in open literature are applied to the simulated quantal-response data to estimate true reliability over time. Rankings in estimation accuracy for different sample sizes are determined using t-test of SSE. Furthermore, MSE at each time, including both bias and variance of estimated reliability metrics for each method are analyzed to investigate how much both bias and variance contribute the SSE. From the MSE analysis, MSE provides reliability estimation trend for each method. Parametric estimation method provides more accurate reliability estimation results than the other methods for most of sample sizes.

Effect Analysis of Sample Size and Sampling Periods on Accuracy of Reliability Estimation Methods for One-shot Systems using Multiple Comparisons (다중비교를 이용한 샘플수와 샘플링 시점수의 원샷 시스템 신뢰도 추정방법 정확성에 대한 영향 분석)

  • Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.435-441
    • /
    • 2012
  • This paper provides simulation-based results of effect analysis of sample size and sampling periods on accuracy of reliability estimation methods using multiple comparisons with analysis of variance. Sum of squared errors in estimated reliability measures were evaluated through applying seven estimation methods for one-shot systems to simulated quantal-response data. Analysis of variance was implemented to investigate change in these errors according to variations of sample size and sampling periods for each estimation method, and then the effect analysis on accuracy in reliability estimation was performed using multiple comparisons based on sample size and sampling periods. An efficient way to allocate both sample size and sampling periods for reliability estimation tests of one-shot systems is proposed in this paper from the effect analysis results.

Fast Dynamic Reliability Estimation Approach of Seismically Excited SDOF Structure (지진하중을 받는 단자유도 구조물의 신속한 동적 신뢰성 추정 방법)

  • Lee, Do-Geun;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.39-48
    • /
    • 2020
  • This study proposes a fast estimation method of dynamic reliability indices or failure probability for SDOF structure subjected to earthquake excitations. The proposed estimation method attempts to derive coefficient function for correcting dynamic effects from static reliability analysis in order to estimate the dynamic reliability analysis results. For this purpose, a total of 60 cases of structures with various characteristics of natural frequency and damping ratio under various allowable limits were taken into account, and various types of approximation coefficient functions were considered as potential candidate models for dynamic effect correction. Each reliability index was computed by directly performing static and dynamic reliability analyses for the given 60 cases, and nonlinear curve fittings for potential candidate models were performed from the computed reliability index data. Then, the optimal estimation model was determined by evaluating the accuracy of the dynamic reliability analysis results estimated from each candidate model. Additional static and dynamic reliability analyses were performed for new models with different characteristics of natural frequency, damping ratio and allowable limit. From these results, the accuracy and numerical efficiency of the optimal estimation model were compared with the dynamic reliability analysis results. As a result, it was confirmed that the proposed model can be a very efficient tool of the dynamic reliability estimation for seismically excited SDOF structure since it can provide very fast and accurate reliability analysis results.

RELIABILITY ESTIMATION OF A MIXTURE EXPONENTIAL MODEL USIGN GIBBS SAMPLER

  • Kim, Hee-Cheul;Kim, Pyong-Koo
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.661-668
    • /
    • 1999
  • Reliability estimation using Gibbs sampler considered for modeling mixture exponential reliability problems. Gibbs sampler is developed to compute the features of the posterior distribution. Bayesian estimation of complicated functions requires simpler esti-mation techniques due to the mathematical difficulties involved in the Bayes approach. The Maximum likelihood estimator and the Gibbs estimator of reliability of the system are derived. By simula-tion risk behaviors of derived estimators are compared. model de-termination based on relative error is considered. A numerical study with a simulated data set is provided.

Mechanical Reliability(Life-Time) Estimation for 25.8kV Eco Solid Insulated Switchgear (25.8kV급 친환경 고체절연차단기(Solid Insulated Switchgear)에 대한 기계적 신뢰성(수명) 평가)

  • Lee, Do-Hoon;Lee, Seog-Won;Park, Seok-Weon;Kim, Young-Geun;Lee, Jhong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.202-205
    • /
    • 2010
  • In this paper, mechanical reliability(Life-time) estimation method for 25.8kV SIS(Solid Insulated Switchgear) has been studied. Recently enacted KEPCO's standard includes clause that have to submit a warrantable reliability data for life-time(over B10 25 years) of an epoxy-solid insulating material. Accordingly, this research was carried out on the ALT(Accelerated Life Test) and Life-Estimation method for SIS's insulating material. Mechanical life-time estimation for SIS's insulating material is to verify reliability for tensile creep & fatigue stress, which is the major mechanical stress of SIS. This study proved that SIS's reliability for mechanical stress and established that confidence for estimation results in further verification test.

Sensitivity analysis of reliability estimation methods for attribute data to sample size and sampling points of time (계수형 데이터에 대한 신뢰도 추정방법의 샘플 수와 샘플링 시점 수에 따른 민감도 분석)

  • Son, Young-Kap;Ryu, Jang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.581-587
    • /
    • 2011
  • Reliability estimation methods using attribute data are widely used in reliability evaluation of various systems such as nuclear energy plants, food and drug, and space launch vehicles. This paper shows sensitivity analysis and comparison results of reliability estimation methods including a parametric estimation method in open literature with respect to both sample size and sampling points of time. And ways to improve accuracy of each reliability estimation method were proposed from the sensitivity analysis results.

Development of a Storage-Reliability Estimation Method Using Quantal Response Data for One-Shot Systems with Low Reliability-Decreasing Rates (미소한 신뢰도 감소율을 가지는 원샷 시스템의 가부반응 데이터를 이용한 저장 신뢰도 추정방법 개발)

  • Jang, Hyun-Jeung;Son, Young-Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1291-1298
    • /
    • 2011
  • This paper proposes a new reliability estimation method for one-shot systems using quantal response data, which is based on a parametric estimation method. The proposed method considers the time-variant failure ratio of the quantal response data and it can overcome the problems in parametric estimation methods. Seven reliability estimation methods in the literature were compared with the proposed method in terms of the accuracy of reliability estimation in order to verify the proposed method. To compare the accuracy of reliability estimation, the SSEs (Sum of Squared Error) of the reliability estimation results for the different estimation methods were evaluated according to the various numbers of samples tested. The proposed method provided more accurate reliability estimation results than any of the other methods from the results of the accuracy comparison.

RELIABILITY ESTIMATION FOR A DIGITAL INSTRUMENT AND CONTROL SYSTEM

  • Yaguang, Yang;Russell, Sydnor
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.405-414
    • /
    • 2012
  • In this paper, we propose a reliability estimation method for DI&C systems. At the system level, a fault tree model is suggested and Boolean algebra is used to obtain the minimal cut sets. At the component level, an exponential distribution is used to model hardware failures, and Bayesian estimation is suggested to estimate the failure rate. Additionally, a binomial distribution is used to model software failures, and a recently developed software reliability estimation method is suggested to estimate the software failure rate. The overall system reliability is then estimated based on minimal cut sets, hardware failure rates and software failure rates.