• Title/Summary/Keyword: relay-based cooperative communication

Search Result 94, Processing Time 0.017 seconds

Performance Comparison of Relay Selection-Based Amplify-and-Forward Relaying Systems using Full or Partial Channel Information (전체 채널 정보와 부분 채널 정보를 이용하는 중계 노드 선택 기반 증폭 후 전달 중계 시스템의 성능 비교)

  • Lee, In-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.70-80
    • /
    • 2012
  • In this paper, we consider the amplify-and-forward relaying systems with the relay selection (AF-RS) using full channel information (FCI) and using partial channel information (PCI), respectively, in which the direct communication link between a source and a destination is available. And, the outage probabilities for the AF-RS using FCI and using PCI are investigated in Rayleigh fading channels, respectively. We provide exact outage probabilities, tight outage probability lower bounds, and asymptotic outage probabilities, respectively. And also, we present coding gains achievable by the AF-RS using FCI and using PCI. Through numerical investigation, all the analytic expressions are verified, and the coding gains are respectively evaluated with different average channel powers for the first and the second hop as well as different numbers of relays.

Connection between Fourier of Signal Processing and Shannon of 5G SmartPhone (5G 스마트폰의 샤논과 신호처리의 푸리에의 표본화에서 만남)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.69-78
    • /
    • 2017
  • Shannon of the 5G smartphone and Fourier of the signal processing meet in the sampling theorem (2 times the highest frequency 1). In this paper, the initial Shannon Theorem finds the Shannon capacity at the point-to-point, but the 5G shows on the Relay channel that the technology has evolved into Multi Point MIMO. Fourier transforms are signal processing with fixed parameters. We analyzed the performance by proposing a 2N-1 multivariate Fourier-Jacket transform in the multimedia age. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^{\dot{+}}=nl_n$, where $A^{\dot{+}}$ is the transpose matrix of the element-wise inverse of A, that is, $A^{\dot{+}}=(a^{-1}_{kj})$, which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.

An Automatic Repeating Protocol in Cooperative Spectrum Sharing (협력적 스펙트럼 공유의 자동 반복 프로토콜)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.101-108
    • /
    • 2013
  • In this paper, we propose a method in which the negative acknowledge (NACK) message is used as command for cooperation and spectrum sharing. This allows for an automatic request for cooperation and sharing when the direct link of the primary user is in outage, and also allows for saving the number of control messages in cooperation-spectrum sharing based paradigm. In the sharing phase, the selected relay shares a power fraction of $1-{\alpha}$ for secondary transmitted signal while the remaining of ${\alpha}$ is for primary retransmitted signal. In the case of no relay collected, primary transmitter uses NACK as a command to retransmit the signal with fully power fraction (${\alpha}=1$). Both systems are assumed to employ BPSK signals. In this scheme, we propose the joint optimal decoding in the secondary user. The frame error rate (FER) performance at both systems is then analyzed. The theoretical and simulation results validate the analysis and confirm the efficiency of the protocol.

Spectrum Hole Utilization in Cognitive Two-way Relaying Networks

  • Gao, Yuan;Zhu, Changping;Tang, Yibin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.890-910
    • /
    • 2014
  • This paper investigates the spectrum hole utilization of cooperative schemes for the two-way relaying model in order to improve the utilization efficiency of limited spectrum holes in cognitive radio networks with imperfect spectrum sensing. We propose two specific bidirectional secondary data transmission (BSDT) schemes with two-step and three-step two-way relaying models, i.e., two-BSDT and three-BSDT schemes, where the spectrum sensing and the secondary data transmission are jointly designed. In the proposed cooperative schemes, the best two-way relay channel between two secondary users is selected from a group of secondary users serving as cognitive relays and assists the bi-directional communication between the two secondary users without a direct link. The closed-form asymptotic expressions for outage probabilities of the two schemes are derived with a primary user protection constraint over Rayleigh fading channels. Based on the derived outage probabilities, the spectrum hole utilization is calculated to evaluate the percentage of spectrum holes used by the two secondary users for their successful information exchange without channel outage. Numerical results show that the spectrum hole utilization depends on the spectrum sensing overhead and the channel gain from a primary user to secondary users. Additionally, we compare the spectrum hole utilization of the two schemes as the varying of secondary signal to noise ratio, the number of cognitive relays, and symmetric and asymmetric channels.