• Title/Summary/Keyword: relay optimization

Search Result 98, Processing Time 0.026 seconds

Optimization of Coverage Extension in OFDMA Based MMR System (OFDMA 방식을 사용하는 MMR시스템의 최적화된 커버리지 확장)

  • Kim, Seung-Yeon;Kim, Se-Jin;Ryu, Seung-Wan;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.567-574
    • /
    • 2008
  • In this paper, we propose an optimal coverage extension scheme in the OFDMA based mobile multi-hop relay system. First, we propose an optimal frequency and time assignment scheme for maximizing system throughput and analyze the frame efficiency of schemes. Then, under the given BS capacity, we find the maximum number of relay hops that can be used to estimate the maximum coverage area of a BS in a multi-hop relay system. Analytical results show that the proposed scheme is efficient in coverage extension and throughput maximization in OFDMA based multi-hop relay system. Our work may be a rough guideline to control the parameters for multi-hop relay system optimization.

Optimal Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm (적응진화연산을 이용한 배전계통의 과전류계전기 최적 정정치 결정)

  • Jeong, Hee-Myung;Lee, Hwa-Seok;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1521-1526
    • /
    • 2007
  • This paper presents the application of Adaptive Evolutionary Algorithm (AEA) to search an optimal setting of overcurrent relay coordination to protect ring distribution systems. The AEA takes the merits of both a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. The overcurrent relay settings and coordination requirements are formulated into a set of constraint equations and an objective function is developed to manage the overcurrent relay settings by the Time Coordination Method. The domain of overcurrent relays coordination for the ring-fed distribution systems is a non-linear system with a lot of local optimum points and a highly constrained optimization problem. Thus conventional methods fail in searching for the global optimum. AEA is employed to search for the optimum relay settings with maximum satisfaction of coordination constraints. The simulation results show that the proposed method can optimize the overcurrent relay settings, reduce relay mis-coordinated operations, and find better optimal overcurrent relay settings than the present available methods.

Relaying Protocols and Delay Analysis for Buffer-aided Wireless Powered Cooperative Communication Networks

  • Zhan, Jun;Tang, Xiaohu;Chen, Qingchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3542-3566
    • /
    • 2018
  • In this paper, we investigate a buffer-aided wireless powered cooperative communication network (WPCCN), in which the source and relay harvest the energy from a dedicated power beacon via wireless energy transfer, then the source transmits the data to the destination through the relay. Both the source and relay are equipped with an energy buffer to store the harvested energy in the energy transfer stage. In addition, the relay is equipped with a data buffer and can temporarily store the received information. Considering the buffer-aided WPCCN, we propose two buffer-aided relaying protocols, which named as the buffer-aided harvest-then-transmit (HtT) protocol and the buffer-aided joint mode selection and power allocation (JMSPA) protocol, respectively. For the buffer-aided HtT protocol, the time-averaged achievable rate is obtained in closed form. For the buffer-aided JMSPA protocol, the optimal adaptive mode selection scheme and power allocation scheme, which jointly maximize the time-averaged throughput of system, are obtained by employing the Lyapunov optimization theory. Furthermore, we drive the theoretical bounds on the time-averaged achievable rate and time-averaged delay, then present the throughput-delay tradeoff achieved by the joint JMSPA protocol. Simulation results validate the throughput performance gain of the proposed buffer-aided relaying protocols and verify the theoretical analysis.

A Joint Resource Allocation Scheme for Relay Enhanced Multi-cell Orthogonal Frequency Division Multiple Networks

  • Fu, Yaru;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.288-307
    • /
    • 2013
  • This paper formulates resource allocation for decode-and-forward (DF) relay assisted multi-cell orthogonal frequency division multiple (OFDM) networks as an optimization problem taking into account of inter-cell interference and users fairness. To maximize the transmit rate of system we propose a joint interference coordination, subcarrier and power allocation algorithm. To reduce the complexity, this semi-distributed algorithm divides the primal optimization into three sub-optimization problems, which transforms the mixed binary nonlinear programming problem (BNLP) into standard convex optimization problems. The first layer optimization problem is used to get the optimal subcarrier distribution index. The second is to solve the problem that how to allocate power optimally in a certain subcarrier distribution order. Based on the concept of equivalent channel gain (ECG) we transform the max-min function into standard closed expression. Subsequently, with the aid of dual decomposition, water-filling theorem and iterative power allocation algorithm the optimal solution of the original problem can be got with acceptable complexity. The third sub-problem considers dynamic co-channel interference caused by adjacent cells and redistributes resources to achieve the goal of maximizing system throughput. Finally, simulation results are provided to corroborate the proposed algorithm.

Robust Relay Design for Two-Way Multi-Antenna Relay Systems with Imperfect CSI

  • Wang, Chenyuan;Dong, Xiaodai;Shi, Yi
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.45-55
    • /
    • 2014
  • The paper investigates the problem of designing the multiple-antenna relay in a two-way relay network by taking into account the imperfect channel state information (CSI). The objective is to design the multiple-antenna relay based upon the CSI estimates, where the estimation errors are included to attain the robust design under the worst-case philosophy. In particular, the worst-case transmit power at the multiple-antenna relay is minimized while guaranteeing the worst-case quality of service requirements that the received signal-to-noise ratio (SNR) at both sources are above a prescribed threshold value. Since the worst-case received SNR expression is too complex for subsequent derivation and processing, its lower bound is explored instead by minimizing the numerator and maximizing the denominator of the worst-case SNR. The aforementioned problem is mathematically formulated and shown to be nonconvex. This motivates the pursuit of semidefinite relaxation coupled with a randomization technique to obtain computationally efficient high-quality approximate solutions. This paper has shown that the original optimization problem can be reformulated and then relaxed to a convex problem that can be solved by utilizing suitable randomization loop. Numerical results compare the proposed multiple-antenna relay with the existing nonrobust method, and therefore validate its robustness against the channel uncertainty. Finally, the feasibility of the proposed design and the associated influencing factors are discussed by means of extensive Monte Carlo simulations.

A Probabilistic Method Based Protectability Evaluation of Distance Relay in Transmission Networks

  • Zhang, Wen-Hao;Choi, Myeon-Song;Lee, Seung-Jae;Lim, Il-Hyung;Rim, Seong-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.346-353
    • /
    • 2008
  • This paper defines the concept of “protectability” for the performance evaluation of distance relay considering its sensitivity and selectivity. The paper starts from the probabilistic modeling of the errors, and based on this model, a detailed explanation of protectability calculation for each zone of the distance relay is presented. An effect of the Weighting Rate and the Measurement Deviation on the protectability evaluation is also given. By considering this effect, the optimization of relay setting can be realized. The proposed method is applied to a typical model system to show its effectiveness

Proportional-Fair Downlink Resource Allocation in OFDMA-Based Relay Networks

  • Liu, Chang;Qin, Xiaowei;Zhang, Sihai;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.633-638
    • /
    • 2011
  • In this paper, we consider resource allocation with proportional fairness in the downlink orthogonal frequency division multiple access relay networks, in which relay nodes operate in decode-and-forward mode. A joint optimization problem is formulated for relay selection, subcarrier assignment and power allocation. Since the formulated primal problem is nondeterministic polynomial time-complete, we make continuous relaxation and solve the dual problem by Lagrangian dual decomposition method. A near-optimal solution is obtained using Karush-Kuhn-Tucker conditions. Simulation results show that the proposed algorithm provides superior system throughput and much better fairness among users comparing with a heuristic algorithm.

Zero-one Integer Programming Approach to Determine the Minimum Break Point Set in Multi-loop and Parallel Networks

  • Moirangthem, Joymala;Dash, Subhransu Sekhar;Ramaswami, Ramas
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.151-156
    • /
    • 2012
  • The current study presents a zero-one integer programming approach to determine the minimum break point set for the coordination of directional relays. First, the network is reduced if there are any parallel lines or three-end nodes. Second, all the directed loops are enumerated to reduce the iteration. Finally, the problem is formulated as a set-covering problem, and the break point set is determined using the zero-one integer programming technique. Arbitrary starting relay locations and the arbitrary consideration of relay sequence to set and coordinate relays result in navigating the loops many times and futile attempts to achieve system-wide relay coordination. These algorithms are compared with the existing methods, and the results are presented. The problem is formulated as a setcovering problem solved by the zero-one integer programming approach using LINGO 12, an optimization modeling software.

Efficient Radio Resource Allocation for Cognitive Radio Based Multi-hop Systems (다중 홉 무선 인지 시스템에서 효과적인 무선 자원 할당)

  • Shin, Jung-Chae;Min, Seung-Hwa;Cho, Ho-Shin;Jang, Youn-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.325-338
    • /
    • 2012
  • In this paper, a radio resource allocation scheme for a multi-hop relay transmission in cognitive radio (CR) system is proposed to support the employment of relay nodes in IEEE 802.22 standard for wireless regional area network (WRAN). An optimization problem is formulated to maximize the number of serving secondary users (SUs) under system constraints such as time-divided frame structure for multiplexing and a single resource-unit to every relay-hop. However, due to mathematical complexity, the optimization problem is solved with a sub-optimal manner instead, which takes three steps in the order of user selection, relay/path selection, and frequency selection. In the numerical analysis, this proposed solution is evaluated in terms of service rate denoting as the ratio of the number of serving SUs to the number of service-requesting SUs. Simulation results show the condition of adopting multi-hop relay and the optimum number of relaying hops by comparing with the performance of 1-hop system.

Sum MSE Minimization for Downlink Multi-Relay Multi-User MIMO Network

  • Cho, Young-Min;Yang, Janghoon;Seo, Jeongwook;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2722-2742
    • /
    • 2014
  • We propose methods of linear transceiver design for two different power constraints, sum relay power constraint and per relay power constraint, which determine signal processing matrices such as base station (BS) transmitter, relay precoders and user receivers to minimize sum mean square error (SMSE) for multi-relay multi-user (MRMU) networks. However, since the formulated problem is non-convex one which is hard to be solved, we suboptimally solve the problems by defining convex subproblems with some fixed variables. We adopt iterative sequential designs of which each iteration stage corresponds to each subproblem. Karush-Kuhn-Tucker (KKT) theorem and SMSE duality are employed as specific methods to solve subproblems. The numerical results verify that the proposed methods provide comparable performance to that of a full relay cooperation bound (FRCB) method while outperforming the simple amplify-and-forward (SAF) and minimum mean square error (MMSE) relaying in terms of not only SMSE, but also the sum rate.