• Title/Summary/Keyword: relay location

Search Result 112, Processing Time 0.023 seconds

A study on the prediction method of the real fault distance using probability to the relay data of transmission line fault location (송전선로 거리표정치에 대한 실 고장거리의 확률적 예측방안)

  • Lee, Y.H.;Back, D.H.;Jang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.10-11
    • /
    • 2006
  • The fault location is obtained from the distance relay that detects the fault of the transmission line. In this time, transmission line crews track down the fault location and the reasons. However, because of having error at the fault location of the distance relay, there is a discordance between real and obtained fault location. As this reason, the inspection time for finding fault location can be longer. In this paper, we proposed the statistical (regression) analysis method based on each type of relay's the historical fault location data and the real fault distance data to improve the problems. With finding the regression equation based on the regression analysis, and putting the relay fault location into that equation, the real fault distance is calculated. As a result of the Prediction fault location, the inspection time of transmission line can be reduced.

  • PDF

Exact Performance Analysis of AF Based Hybrid Satellite-Terrestrial Relay Network with Co-Channel Interference

  • Javed, Umer;He, Di;Liu, Peilin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3412-3431
    • /
    • 2015
  • This paper considers the effect of co-channel interference on hybrid satellite-terrestrial relay network. In particular, we investigate the problem of amplify-and-forward (AF) relaying in hybrid satellite-terrestrial link, where the relay is interfered by multiple co-channel interferers. The direct link between satellite and terrestrial destination is not available due to masking by surroundings. The destination node can only receive signals from satellite with the assistance of a relay node situated at ground. The satellite-relay link is assumed to follow the shadowed Rice fading, while the channels of interferer-relay and relay-destination links experience Nakagami-m fading. For the considered AF relaying scheme, we first derive the analytical expression for the moment generating function (MGF) of the output signal-to-interference-plus-noise ratio (SINR). Then, we use the obtained MGF to derive the average symbol error rate (SER) of the considered scenario for M-ary phase shift keying (M-PSK) constellation under these generalized fading channels.

Modified Transmission Line Protection Scheme in the Presence of SCC

  • Naeini, Ehsan Mostaghimi;Vaseghi, Behrouz;Mahdavian, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.533-540
    • /
    • 2017
  • Distance relay identifies the type and location of fault by measuring the transmission line impedance. However any other factors that cause miss calculating the measured impedance, makes the relay detect the fault in incorrect location or do not detect the fault at all. One of the important factors which directly changes the measured impedance by the relay is series capacitive compensation (SCC). Another factor that changes the calculated impedance by distance relay is fault resistance. This paper provides a method based on the combination of distance and differential protection. At first, faulty transmission line is detected according to the current data of buses. After that the fault location is calculated using the proposed algorithm on the transmission line. This algorithm is based on active power calculation of the buses. Fault resistance is calculated from the active powers and its effect will be deducted from calculated impedance by the algorithm. This method measures the voltage across SCC by phasor measurement units (PMUs) and transmits them to the relay location via communication channels. The transmitted signals are utilized to modify the voltage signal which is measured by the relay. Different operating modes of SCC and as well as different faults such as phase-to-phase and phase-to-ground faults are examined by simulations.

Effect of Relay Location in Cooperative Networks with Partially Differential Modulation Scheme (부분차등변조 방식을 이용한 협력네트워크에서의 중계기 위치의 영향)

  • Cho, Woong;Cho, Han-Byeog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.6
    • /
    • pp.671-676
    • /
    • 2015
  • Cooperative networks eliminate shadow area using relay and enhance communication performance by creating virtual multi input multi output (MIMO) system. In this paper, we analyze the performance of cooperative networks which use coherent modulation scheme in source-relay nodes and differential modulation scheme in relay-destination nodes depending on the relay location. We consider the performance analysis of systems with and without the direct transmission between source and destination node where the direct transmission adopts differential modulation scheme. In addition, the performance of the system with fully differential modulation scheme is compared with the system using partially differential modulation scheme. The performance of system is based on the symbol error rate between source and destination node.

Performance Analysis of Resource Allocation in Asymmetric dual-hop Communication System (비대칭 환경에서 듀얼홉 통신시스템의 자원할당 성능분석)

  • Woong Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.655-660
    • /
    • 2024
  • Relay has been applied various communication environments due to its advantages of performance enhancement in communication systems. In this paper, we analyze the performance of a dual-hop communication system which uses one relay by considering asymmetric communication scenarios. The performance is based on bit error rate. Firstly, we compare the overall performance of dual-hop communication system under symmetric and asymmetric, and then analyze the performance depending on the resource allocation. Energy allocation and relay location are considered in the resource allocation. The performance of overall system for each energy allocation and relay location is analyzed. In addition, we analyze the performance of communication system when both energy and relay location are considered simultaneously. Based on the analyzed performance, we discuss the effect of resource allocation for symmetric and asymmetric environments.

Performance Comparison of Differential Distributed Cooperative Networks with Modulation Scheme and Relay Location (변조방식 및 중계기 위치를 고려한 차등 분산 협력 네트워크의 성능비교)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.445-450
    • /
    • 2020
  • Cooperative networks provides the benefits of performance improvements and capacity increment when the source node transmits signal to the destination node using several relay nodes. In this paper, we consider the cooperative network where the transmission scheme between the source node and relay node use conventional binary signaling, whereas the transmission scheme between thee relay node and destination node adopt the differential space time coding signaling. We analyze the performance of the system depending on the modulation scheme, i.e., coherent and differential modulation, at the source-relay links. The performance depending on the relay location is also compared by considering modulation scheme and the number of relay node.

Performance Analysis And Optimization For AF Two-Way Relaying With Relay Selection Over Mixed Rician And Rayleigh Fading

  • Fan, Zhangjun;Guo, Daoxing;Zhang, Bangning;Zeng, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3275-3295
    • /
    • 2012
  • In this paper, we analyze the performance of an amplify-and-forward (AF) two-way relaying system, where two sources exchange information via the aid of an intermediate relay that is selected among multiple relays according to max-min criterion. We consider a practical scenario, where one source-relay link undergoes Rician fading, and the other source-relay link is subject to Rayleigh fading. To be specific, we derive a tight lower bound for the outage probability. From this lower bound, the asymptotic outage probability and average symbol error rate (SER) expressions are derived to gain insight into the system performance at high signal-to-noise ratio (SNR) region. Furthermore, we investigate the optimal power allocation (PA) with fixed relay location (RL), optimal RL with fixed PA and joint optimization of PA and RL to minimize the outage probability and average SER. The analytical expressions are verified through Monte Carlo simulations, where the positive impact of Rician factor on the system performance is also illustrated. Simulation results also validate the effectiveness of the proposed PA and relay positioning schemes.

Average Rate Performance of Two-Way Amplify-and-Forward Relaying in Asymmetric Fading Channels

  • Park, Jae-Cheol;Song, Iick-Ho;Lee, Sung-Ro;Kim, Yun-Hee
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.250-256
    • /
    • 2011
  • A two-way relaying (TWR) system is analyzed, where two source terminals with unequal numbers of antennas exchange data via an amplify-and-forward relay terminal with a single antenna. In the system considered herein, the link quality between the sources and relay can generally be asymmetric due to the nonidentical antenna configuration, power allocation, and relay location. In such a general setup, accurate bounds on the average sum rate (ASR) are derived when beamforming or orthogonal space time block coding is employed at the sources. We show that the proposed bounds are almost indistinguishable from the exact ASR under various system configurations. It is also observed that the ASR performance of the TWR system with unequal numbers of source antennas is more sensitive to the relay location than to the power allocation.

A Dynamic Optimum Time Allocation Method in Partial Relay Systems (부분 중계기 협력 다중화 기술에서 동적 최적 시간 할당 기술)

  • Cho, Jung-Il;Kwon, Yang-Soo;Kim, Nam-Ri;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.746-751
    • /
    • 2009
  • We propose a dynamic time allocation method in cooperative multiplexing with partial relaying system. This method uses a linear programming and considers protocol that is based on relaying of partial information bits followed by cooperative multiplexing. In this protocol, regardless of the location of relay, the allocation time for each transmission time slots are constant. Using a dynamic time allocation method with considering the location of relay, we can find optimal transmission time slots, and show that the system capacity is optimized.

Client Collaboration for Power and Interference Reduction in Wireless Cellular Communication

  • Nam, Hyungju;Jung, Minchae;Hwang, Kyuho;Choi, Sooyong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.117-124
    • /
    • 2012
  • A client collaboration (CC) system is proposed for a user relay system. The proposed scheme focuses on the management of transmit power and leakage interference. In the proposed CC system, edge users transmit signals to the masters considered as user relays. The masters relay the signals of the edge users to the base station using the resource blocks (RBs) that are assigned to the edge users. The leakage interference and power consumption were analyzed in the CC system. In addition, an optimal master location problem was formulated based on the signal-to-leakage-plus-noise ratio (SLNR). Because the optimal master location problem is quite complex, a sub-optimal master location problem was proposed and a closed-form sub-optimal master location was obtained. The edge users generate smaller leakage interference and power consumption in the proposed CC system compared to the system without the CC. The numerical results showed that the edge users generate smaller leakage interference and power consumption in the proposed CC system compared to the system without the CC, and the average throughput increases.

  • PDF