• Title/Summary/Keyword: relaxed Newton's method

Search Result 2, Processing Time 0.015 seconds

CONVERGENCE OF THE RELAXED NEWTON'S METHOD

  • Argyros, Ioannis Konstantinos;Gutierrez, Jose Manuel;Magrenan, Angel Alberto;Romero, Natalia
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.137-162
    • /
    • 2014
  • In this work we study the local and semilocal convergence of the relaxed Newton's method, that is Newton's method with a relaxation parameter 0 < ${\lambda}$ < 2. We give a Kantorovich-like theorem that can be applied for operators defined between two Banach spaces. In fact, we obtain the recurrent sequence that majorizes the one given by the method and we characterize its convergence by a result that involves the relaxation parameter ${\lambda}$. We use a new technique that allows us on the one hand to generalize and on the other hand to extend the applicability of the result given initially by Kantorovich for ${\lambda}=1$.

Application of Davidenko's Method to Rigorous Analysis of Leaky Modes in Circular Dielectric Rod Waveguides

  • Kim, Ki-Young;Tae, Heung-Sik;Lee, Jeong-Hae
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.199-206
    • /
    • 2003
  • Numerical solutions to complex characteristic equations are quite often required to solve electromagnetic wave problems. In general, two traditional complex root search algorithms, the Newton-Raphson method and the Muller method, are used to produce such solutions. However, when utilizing these two methods, the choice of the initial iteration value is very sensitive, otherwise, the iteration can fail to converge into a solution. Thus, as an alternative approach, where the selection of the initial iteration value is more relaxed and the computation speed is high, Davidenko's method is used to determine accurate complex propagation constants for leaky circular symmetric modes in circular dielectric rod waveguides. Based on a precise determination of the complex propagation constants, the leaky mode characteristics of several lower-order circular symmetric modes are then numerically analyzed. In addition, no modification of the characteristic equation is required for the application of Davidenko's method.