• Title/Summary/Keyword: relative strength of effects

Search Result 217, Processing Time 0.028 seconds

Effects of processing conditions on tensile properties and color of Alaska Pollack meal protein isolate film (가공조건이 명태어분단백질 필름의 인장강도와 색에 미치는 영향)

  • YOU Byeong-Jin;SHIM Jae-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.418-422
    • /
    • 2000
  • The tensile properties and color of fish meal film under various processing conditions were measured to obtain basic data for biodegradable Alaska Pollack meal protein isolate (APMPI) film. The tensile strength and the elongation of APMPI film were increased with casting volume of APMPI solution but those of APMPI film were weakened with the addition of glycerol amount as well as reduction of pH values. In case of adding various plasticizer, the tensile strength of film was increased in order as follows: sorbitol, polyethylene glycol and glycerol. The elongation was increased in order of polyethylene glycol, sorbitol and glycerol. The tensile strength of film increased with increment of APMPI concentration, but the elongation of film was not affected by APMPI concentration. The tensile strength of APMPI film was decreased with the increment of relative humidity but its elongation was increased with the increment of relative humidity, Not only lightness and yellowness of film added with sorbitol but also redness and total different color of film added with polyethylene glycol showed the highest value in Hunter color system.

  • PDF

Intra-ply, inter-ply and FG hybrid composites based on basalt and poly-ester fibers: Flexural and impact properties

  • Ehsan Fadayee Fard;Hassan Sharifi;Majid Tehrani;Ehsan Akbari
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.67-81
    • /
    • 2023
  • Basalt and poly-ester fibers along with epoxy resin were used to produce inter-ply, intra-ply and functionally gradient hybrid composites. In all of the composites, the relative content of basalt fiber to poly-ester fiber was equal to 50 percent. The flexural and charpy impact properties of the hybrid composites are presented with particular regard to the effects of the hybrid types, stacking sequence of the plies, loading direction and loading speed. The results show that with properly choosing the composition and the stacking sequence of the plies; the inter-ply hybrid composites can achieve better flexural strength and impact absorption energy compared to the intra-ply and functionally gradient composites. The flexural strength and impact absorption energy of the functionally gradient hybrid composites is comparable to, or higher than the intra-ply sample. Also, by increasing the loading speed, the flexural strength increases while the flexural modulus does not have any special trend.

Bond Analysis of Ribbed Reinforcing Bars

  • Park, Oan-Chul
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.19-25
    • /
    • 2001
  • A simple expression to predict bond strength of reinforcing bars with rib deformation to the surrounding is derived for the case of splitting bond failure. Finite element analysis is used to model the confining behavior of concrete cover. The roles of the interfacial properties, specifically, the friction coefficient, cohesion, the relative rib area and the rib face angle are examined. Values of bond strength obtained using the analytical model are in good agreement with the bond test results from the previous studies. The analytical model provides insight into interfacial bond mechanisms and the effects of the key variables on the bond strength of deformed bars to concrete. Based on the comparison between the analytical results and the test results, the values of cohesion, coefficient of friction, and the effective rib face angle are proposed.

  • PDF

Flexural behaviour of square UHPC-filled hollow steel section beams

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.225-237
    • /
    • 2012
  • This paper presents an experimental investigation of the flexural behavior of square hollow steel section (HSS) beams subjected to pure bending. Totally six unfilled and nine ultra high performance concrete (UHPC)-filled HSS beams were tested under four-point bending until failure. The effects of the steel tube thickness, the yield strength of the steel tube and the strength of concrete on moment capacity, curvature, and ductility of UHPC-filled HSS beams were examined. The performance indices named relative ductility index (RDI) and strength increasing factor (SIF) were investigated with regard to different height-to-thickness ratio of the specimens. The flexural strengths obtained from the tests were compared with the values predicted by Eurocode 4, AISC-LRFD and CIDECT design codes. The results showed that the increase in the moment capacity and the corresponding curvature is much greater for thinner HSS beams than thicker ones. Eurocode 4 and AISC-LRFD predict the ultimate moment capacity of the all UHPC-filled HSS beams conservatively.

A Study on Mechanical Properties of Concrete at Elevated Temperatures (고온에서의 콘크리트 재료 역학적 특성에 관한 연구)

  • Park, Chan-Kyu;Kim, Gyu-Yong;Lee, Seung-Hoon;Park, Ju-Heon;Kim, Young-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.769-772
    • /
    • 2006
  • The effects of high temperature on strength, elastic modulus and strain at peak stress of concrete were experimentally investigated. The type of test was the stressed test that a preload was applied to the specimen prior to heating and the load was sustained during the heating period. In this study, the level of preload was 25% of compressive strength at room temperature. All tests were conducted at various temperatures(20,100, 200, 300, 400, 500, 600 and $700^{\circ}C$) for concretes made with W/B ratios 46% and 32%. Test results showed that on the whole, the relative values of strength and elastic modulus, and the real strain value at peak stress were not influenced by the W/B ratio.

  • PDF

Effect of the Processing Parameters on the Densification and Strength of 2D SiC Fiber-SiC Matrix Composites Fabricated by Slurry Infiltration and Stacking Process

  • Lim, Kwang-Young;Jang, Doo-Hee;Kim, Young-Wook;Park, Ji-Yeon;Park, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.349-353
    • /
    • 2007
  • 2D SiC fiber-SiC (SiC/SiC) composites were fabricated via slurry infiltration and a stacking process. The effects of the additive composition and content in SiC slurries and the effect of the sintering time on the sintered density and strength of SiC/SiC composites were investigated. A slurry containing $Al_2O_3-Y_2O_3-MgO$ (AYM) additives led to a higher strength compared to a slurry containing $Al_2O_3-Y_2O_3-CaO$ (AYC) additives. The sintered density increased as the sintering time increased and showed a maximum (>98%) at 4 h. In contrast, the flexural strength increased as the sintering time increased and showed a maximum (615 MPa) at 6 h. The relative density and flexural strength increased as the additive content increased.

Mechanical behaviors of concrete combined with steel and synthetic macro-fibers

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.207-220
    • /
    • 2007
  • In this paper, hybrid fibers including high elastic modulus steel fiber and low elastic modulus synthetic macro-fiber (HPP) as two elements were used as reinforcement materials in concrete. The flexural toughness, flexural impact and fracture performance of the composites were investigated systematically. Flexural impact strength was analyzed with statistic analyses method; based on ASTM and JSCE method, an improved flexural toughness evaluating method suitable for concrete with synthetic macro-fiber was proposed herein. The experimental results showed that when the total fiber volume fractions ($V_f^a$) were kept as a constant ($V_f^a=1.5%$), compared with single type of steel or HPP fibers, hybrid fibers can significantly improve the toughness, flexural impact life and fracture properties of concrete. Relative residual strength RSI', impact ductile index ${\lambda}$ and fracture energy $G_F$ of concrete combined with hybrid fibers were respectively 66-80%, 5-12 and 121-137 N/m, which indicated that the synergistic effects (or combined effects) between steel fiber and synthetic macro-fiber were good.

Mechanical and Antibacterial Properties of Copper-added Austenitic Stainless Steel (304L) by MIM

  • Nishiyabu, Kazuaki;Masai, Yoshikaze;Ishida, Masashi;Tanaka, Shigeo
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.227-234
    • /
    • 2002
  • For the austenitic stainless steel (304L) manufactured by metal injection molding(MIM), the effects of copper content and sintering temperature on the mechanical properties, antibacterial activities, corrosion resistance, and electric resistances were investigated. The specimens were prepared by injection molding of the premixed powders of water-atomized 304 L and Cu with poly-acetyl binders. The green compacts were prepared with various copper contents from 0 to 10 wt.% Cu, which were debound thermally at 873 K for 7.2 ks in $N_2$gas atmosphere and subsequently sintered at various temperatures from 1323 K to 1623 K for 7.2 ks in Ar gas atmosphere. The relative density and tensile strength of the sintered compacts showed the minimum values at 5 and 8 wt.% Cu, respectively. Both the relative density and the tensile strength of the specimen with 10 wt.% Cu sintered at 1373 K showed the highest values, higher than those of copper-free specimen. Antibacterial activities investigated by the plastic film contact printing method for bacilli and the quantitative analysis of copper ion dissolved in water increased as the increase of the copper content to stainless steels. It was also verified by the measurement of pitting potential that the copper addition in 304 L could improve the corrosion resistance. Furthermore the electric conductivity increased with the increase of copper content.

Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W-K-TiC alloys

  • Shi, Ke;Huang, Bo;He, Bo;Xiao, Ye;Yang, Xiaoliang;Lian, Youyun;Liu, Xiang;Tang, Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.190-197
    • /
    • 2019
  • W-K-TiC alloys with different titanium carbide concentrations (0.05, 0.1, 0.25, 0.5, 1, 2) wt.% were fabricated through Mechanical Alloying and Spark Plasma Sintering. The effects of the addition of nano-scaled TiC particles on the relative density, Vickers micro-hardness, microstructure, crystal information, thermal shock resistance, and tensile strength were investigated. It is revealed that the doped TiC nano-particles located at the grain boundaries. The relative density and Vickers micro-hardness of W-K-TiC alloys was enhanced with TiC addition and the highest Vickers micro-hardness is 731.55. As the TiC addition increased from 0.05 to 2 wt%, the room-temperature tensile strength raised from 141 to 353 MPa. The grain size of the W-K-TiC alloys decreased sharply from $2.56{\mu}m$ to 330 nm with the enhanced TiC doping. The resistance to thermal shock damage of W-K-TiC alloys was improved slightly with the increased TiC addition.

Effects of Kinematics and Kinetics of the Lower Extremities Joint during Drop Landing in Adult Women with Patellofemoral Pain Syndrome (슬개대퇴동통증후가 성인 여성의 드롭랜딩 시 하지 주요관절의 운동역학적 변화에 미치는 영향)

  • Jeon, Kyoungkyu;Yeom, Seunghyeok
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Objective: This study investigated the different in isokinetic peak strength of the knee joint, and kinetics and kinematics in drop landing pattern of lower limb between the patellofemoral pain syndrome (PFPS) patients and normal. Method: 30 adult females were divided into the PFPS (age: 23.13±2.77 yrs; height: 160.97±3.79 cm, weight: 51.19±4.86 kg) and normal group (age: 22.80±2.54 yrs, height: 164.40±5.77 cm, weight: 56.14±8.16 kg), with 15 subjects in each group. To examine the knee isokinetic peak strength, kinematics and kinetics in peak vertical ground reaction force during drop landing. Results: The knee peak torque (Nm) and relative strength (%) were significantly weaker PFPS group than normal group. In addition, PFPS group had significantly greater hip flexion angle (°) than normal group. Moreover, normal group had significantly greater moment of hip abduction, hip internal rotation, and left ankle eversion than PFPS group, and PFPS group had significantly greater moment of knee internal rotation. Finally, there was significant differences between the groups at anteroposterior center of pressure. Conclusion: The PFPS patients had weakened knee strength, and which can result in an unstable landing pattern and cause of more stress in the knee joints despite to effort of reduce vertical ground reaction force.