• Title/Summary/Keyword: relative strength of effects

Search Result 222, Processing Time 0.045 seconds

Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향)

  • 주진영;박미림;신용덕;임승혁
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF

p-Version Finite Element Model of Stiffened Plates by Hierarchic $C^0$-Element (계층적 $C^0$ - 요소에 의한 보강판의 p-Version 유한요소 모델)

  • 홍종현;우광성;신영식
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 1996
  • A general stiffener element which includes transverse shear deformation is formulated using the p-version finite element method. Hierarchic C/sup o/-shape functions, derived from Integrals of Legendre polynomials, are used to define the assembled stiffness matrix of the stiffener with respect to the local reference frame is transformed to the plate reference system by applying the appropriate transformation matrices in order to insure compatibility of displacements at the junction of the stiffener and plate. The transformation matrices which account for the orientation and the eccentricity effects of the stiffener with respect to the plate reference axes are used to find local behavior at the junction of the stiffener and the relative contributions of the plate and stiffener to the strength of the composite system. The results obtained by the p-version finite element method are comared with the results in literatures, especially those by the h-version finite element analysis program, MICROFEAP-II.

  • PDF

Effects of In Situ YAG on Properties of the Pressurless Annealed Sic-$TiB_2$ Electroconductive Ceramic Composites (무가압 어닐드한 Sic-$TiB_2$ 전도성 복합체의 특성에 미치는 In Situ YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.808-815
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at 1650[$^{\circ}C$] for 4 hours. The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), ${\beta}$-SiC(3C), $TiB_2$, and In Situ YAG($Al_2Y_3O_{12}$). The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. There is another reason which pressureless annealed temperature 1650[$^{\circ}C$] is lower $300{\sim}450[^{\circ}C]$ than applied pressure sintering temperature $1950{\sim}2100[^{\circ}C]$. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[Mpa], 54.60[Gpa] and 2.84[Gpa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of 0.0117[${\Omega}{\cdot}cm$] for 16[wt%] $Al_2O_3+Y_2O_3$ additives at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from $25^{\circ}C$ to 700[$^{\circ}C$]. The resistance temperature coefficient of composite showed the lowest value of $-2.3{\times}10^{-3}[^{\circ}C]^{-1}$ for 16[wt%] additives in the temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$].

What Drives International Science and Technology Cooperation? (과학기술분야 국제협력 필요성의 인식에 대한 연구: 거래비용이론, 성과측청관점, 지식기반관점을 중심으로)

  • Shin, Hyung-Deok;Chung, Tae-Young;Ryu, Choon-Ho;Lee, Joung-Ho
    • Journal of Korea Technology Innovation Society
    • /
    • v.13 no.4
    • /
    • pp.638-655
    • /
    • 2010
  • The importance of international science and technology cooperation is growing more and more, but we do not know much about what criteria could be used to choose a science or a technology that needs international cooperation first and foremost among many kinds of competing sciences and technologies. Moreover, this selection process is affected by evaluators' or science/technology experts' perception, but we do not quite know what they actually see when they evaluate the needs of international cooperation. This study investigates the conditions that international science and technology cooperation is encouraged by scholars and researchers in various areas. Based on theoretical arguments of Transaction Cost Economics, Measurement View, and Knowledge-Based View, we drew hypotheses on when experts perceive greater needs of international cooperation. Using the classification categories of 10 major sciences and technologies, we collected data from 151 respondents from scientists in research institutions and colleges. As a result, we found that experts in science and technology areas perceive strong needs of international cooperation when the importance of focal science or technology is high and the relative national level of focal science or technology is low. Also, we found that the importance and relative level of focal science and technology have positive moderating effects each other. Lastly, we found that when experts evaluate their own major areas, the strength of positive relationship between the importance of science and technology and needs of international cooperation is diminished.

  • PDF

Effects of Mineral Admixture on the Characteristics of Grout for PSC Bridge (광물질 혼화재가 PSC 교량용 그라우트의 특성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Ahn, Ki-Hong;Kang, Su-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • The study investigates the effects of the type, replacement ratio and method of use of mineral admixtures on the fluidity, bleeding ratio, volumetric change and compressive strength of the grout in order to provide basic data for the development of high-quality grout for PSC bridges. In view of the results relative to the type and replacement ratio of the mineral admixtures, it appears that fly ash has practically no effect on the improvement of the fluidity nor on the reduction of bleeding and shrinkage of the grout. On the contrary, blast furnace slag and silica fume appear to have significant effect on the improvement of the fluidity or on the reduction of bleeding and shrinkage of the grout. With regard to the combined use of mineral admixtures, the combination of fly ash and blast furnace slag provides satisfactory fluidity but with significant increase of bleeding and shrinkage, whereas the combination of blast furnace slag and silica fume reduces bleeding and shrinkage but with large loss of the fluidity. On the other hand, the combination of fly ash and silica fume results in satisfactory fluidity accompanied with fair reduction of bleeding and shrinkage of the grout. In view of these results, the type, replacement ratio and method of use of the mineral admixtures are seen to influence the fluidity, bleeding and volumetric change of the grout. Accordingly, it is necessary to select the mineral admixtures considering these effects for their exploitation in the grout of PSC bridges.

Influence of Ionic Strength, pH, and Complex-forming Anions on the Adsorption of Cesium-137 and Strontium-90 by Kaolinite (카올리나이트에 의한 세슘-137 및 스트론튬-90 흡착에 대한 이온강도, pH, 복합체-형성 음이온의 영향)

  • Jeong, Chan Ho;Cho, Young Hwan;Hahn, Pil Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.11-20
    • /
    • 1998
  • The effects of the major cations ($Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$), complex-forming anions ($SO_4{^{2-}}$, $HCO_3{^-}$), and solution pH on the adsorption of $^{137}Cs$ and $^{90}Sr$ by kaolinite in groundwater chemistry were investigated. Three-dimensional Kd modelling designed by a statistical method was attempted to compare the relative effect among hydrated radii, charge and concentration of competing cations on the adsorption of Cs and Sr. The modelling results indicate that the hydrated radii of competing cations is the most important factor, and then their charges and concentrations are also important factors in order. The property of zeta potential of kaolinite particles was discussed in terms of the amphoteric reactions of a kaolinite surface affecting the adsorption of Cs and Sr. The ionic strength of competing cations on the adsorption of Cs and Sr exerts a greater effect than the solution pH. The sorption behaviour of Sr on kaolinite is also highly dependent on the concentration of bicarbonate. The speciation of Sr and the saturation state of a secondary phase were thermodynamically calculated by a computer program, WATEQ4F. This indicates that the change in solution pH with the concentration of bicarbonate and the precipitation of a strontianite ($SrCO_3$) are major factors controlling Sr adsorption behaviour in the presence of bicarbonate ion.

  • PDF

Effect of Polypropylene Fiber on the Freeze-Thaw Damage of Mortar (모르타르의 동결융해 피해에 미치는 폴리프로필렌 섬유의 영향)

  • Yoo, Jae-Chul;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.438-444
    • /
    • 2019
  • In this study, the effect of polypropylene fiber on the freeze-thaw damage of mortar was evaluated experimentally. The effects of the reinforcing of polypropylene fiber on the compressive and bending performance of mortar after 300 cycles of freeze-thaw test were evaluated by comparing the normal mortar and the mortar with polyvinyl alcohol fiber. In addition, the mass loss, relative dynamic elastic modulus, and cumulated pore volume of mortar were measured by each cycle of freeze-thaw test. As a result, it was confirmed that the fiber reinforced mortar, regardless of the fiber type, was effective not only in maintaining the performance of the compressive strength and the bending strength but also suppressing the mass loss after the freeze-thaw test of 300 cycles. Meanwhile, it was confirmed that not only polyvinyl alcohol fibers but also polypropylene fibers can effectively act to suppress the damage of the mortar by freeze-thaw. However, in order to improve the freeze-thaw resistance of mortar mixed with polypropylene fiber, it is necessary to increase the bonding performance with the cement matrix which can be expected from polyvinyl alcohol fiber.

Effects of Germinated and Fermented Unmarketable Soybean on Laying Performance and Egg Quality in Laying Hens (발아, 발효 처리한 비상품성대두 급여가 산란계의 생산성과 계란의 품질에 미치는 영할)

  • Shin, Jin-Ho;Park, Jung-Min;Bak, Da-Jeong;Jean, Woo-Min;Song, Jea-Chul;Kim, Sung-Ki;An, Byoung-Ki;Kang, Chang-Won;Jung, Woo-Suk;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.667-674
    • /
    • 2008
  • This study was conducted to investigate the effects of germinated and fermented unmarketable soybean (GFS) on laying performance and egg quality in laying hens. A total of two hundred laying hens were divided into 5 groups (5 treatment $\times$ 4 replication $\times$ 10 birds each) and fed with the experimental diets for 8 wk as follows: control, GFS free; T1, GFS 0.15%; T2, GFS 0.3%; T3, GFS 1%; T4, GFS 2%. The laying performance, egg quality, blood profiles, cecal microbial population, isoflavone content in egg yolk were investigated. There were no significant differences laying performance, relative liver and spleen weights, egg yolk color, eggshell color among groups. Eggshell strength in groups fed with diets containing GFS increased, but not significantly. Eggshell thickness significantly increased in the GFS-supplemented group. No significant differences were observed in the blood profiles and intestinal microflora after supplementation. The decrease of Haugh unit during storage was alleviated by feeding of GFS (p<0.05). The concentrations of malondialdehyde in groups fed with GFS were decreased as compared with control (p<0.05). Isoflavones in the egg yolk were detected in group fed with diet containing 2% GFS. These results showed that unmarketable GFS could be used as a favorable feed additive and feedstuff for production of quality enhanced and isoflavone fortified eggs.

The Beneficial Effects of Pectin on Obesity In vitro and In vivo (In vitro 및 In vivo에서 펙틴의 비만 억제 효과)

  • Kwon, Jin-Young;Ann, In-Sook;Park, Kun-Young;Cheigh, Hong-Sik;Song, Yeong-Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • The effects of pectin on obesity was studied using 3T3-L1 pre-adipocytes and rats fed 20% high fat diets. The concentration of leptin released from 3T3-L1 adipocytes in the presence of pectin was significantly decreased by 85% compared to that of the control (p<0.05), however, glycerol concentration was not changed. These data indicate that pectin seems to inhibit lipids accumulation in the adipocytes rather than enhance the lipolytic activity. Forty Sprague Dawley rats were fed 20% high fat diet for 8 weeks to induce obesity and then divided equally into four groups. Experimental groups were normal diet group (ND), high fat diet group (HFD), HDF with 10% pectin group (HFP10), and HDF with 20% pectin group (HFP20). Diet for the each group was prepared to be iso-caloric following AIN-76 guideline. After obesity was induced, rats were placed on an restricted diet for 9 weeks. The body weight of HFD increased 50% (p<0.05) compared to the ND, while it was decreased by 12% and 16% for HFP10 and HFP20, respectively (p<0.05). The relative amount of visceral fats for HFDl0 and HFD20 were decreased by 45% and 59% compared to that of HDF (130%), respectively (p<0.05). Pectin seems to have a greater effect on reducing visceral fats accumulation than weight reduction. Significantly increased level of triglyceride, total cholesterol or LDL-cholesterol in the plasma of HFD was returned to the normal or even below the normal by pectin diet, while the level of HDL-cholesterol increased. Lipid lowering effect was also observed in the liver and heart. These effects of pectin were dosedependent. In conclusion, the beneficial effect of pectin on the obesity was observed from cell culture experiment and animal study in terms of inhibiting the accumulation of lipids in the adipocytes.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF