• Title/Summary/Keyword: relative strength of effects

Search Result 222, Processing Time 0.041 seconds

A Study on the Design against Metal Fatigue (파로설계에 관한 소고)

  • Lee, Sun-Bok
    • 한국기계연구소 소보
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1981
  • Fatigue, the birth and growth of cracks in metal parts subjected to repeated loading, has been a problem plaguing engineers since the Industrial Revolution and the advent of rotating or reciprocating machinery. Designing against metal fatigue was studied briefly in several aspects. Examples of fatigue failures were shown. Fatigue was classified by loading: uniaxial Fatigue, multiaxial fatigue, cumulative fatigue da¬mage. Fatigue design criteria were discussed: Infinite-Life Design, Safe-Life Design, Fail-Safe Design, and Damage Tolerant Design. Mitigation of notch effects by design, improvement of fatigue strength of metal parts by residual stress and surface finishing were discussed. Relative fatigue beha¬vior was studied under various environmantal conditions. Especially the effects of corrosion, temperature, fretting, and irradiation were covered.

  • PDF

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

Short term effect of Allii tuberosi semen on muscular fatigue and muscular strength (단기간(短期間)의 구자 투여(投與)가 생쥐의 근피로(筋疲勞)와 근력(筋力)에 미치는 영향(影響))

  • Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub;Byun, Sang-Hyun
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.2
    • /
    • pp.60-70
    • /
    • 2007
  • Purpose: This study was conducted to investigate the muscle anti-fatigue effects of Allii tuberosi semen after short term administration. Methods: 4-6 weeks old ICR mice were used in this study and we administered the water soluble extracts of Allii tuberosi semen in the concentration of 1, 10 and 100mg/0.3ml to each 5 mice (ATS group) and same volume of normal saline was administered to 5 mice (control group) once a day for 30 or 60 days. After the administration we performed the swimming exercise test and the grip strength test. And we measured the concentration of glucose and the activity of lactate dehydrogenase in plasma regarded as biochemical indicator related with the muscular fatigue.. Results: In swimming exercise test. 10 and 100mg/0.3ml ATS groups showed increased time compared with relative control group after 30 days administration. But after 60 days adminstration all ATS groups showed increased results. In grip strength test, 100mg/0.3ml ATS group increased grip strength after 30days administration and 10mg/0.3ml ATS group showed increased result after 60days administration. All the results of plasma glucose and lactate dehydrogenase didn't showed statistically significant difference after 30 and 60 days administration. Conclusion: From this study we could find the anti-fatigue effect of Allii tuberosi semen in the muscle strength related test.

  • PDF

Variation of Undrained Shear Behavior with Consolidation Stress Ratio of Nakdong River Sand (압밀응력비에 따른 낙동강모래의 비배수전단거통 특성)

  • 김영수;정성관;송준혁;정동길
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.83-93
    • /
    • 2003
  • This research, in order to study the effects of initial shear stress of anisotropically consolidated sand that has 0.558% fines, performed several undrained static and dynamic triaxial test. To simulate the real field conditions, loose and dense samples were prepared. Besides, the cyclic shear strength of Nakdong River sand under various combinations of initial static shear stress, stress path, pore water pressure and residual strength relationship was studied. By using Bolton's theory, peak internal friction angle at failure which has considerable effects on the relative density and mean effective stress was determined. In p'- q diagram, the phase transformation line moves closer to the failure line as the specimen's initial anistropical consolidation stress increases. Loose sands were more affected than dense sands. The increase of consolidation stress ratio from 1.4 to 1.8 had an effect on liquefaction resistance strength resulting from the increase of relativity density, and showed similar CSR values in dense specimen condition.

The Effects of the Otago Exercise Combined with Action Observation Training on Brain Activity of the Elderly

  • Kim, Jung-hee;Kim, Eun kyong;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the effects of the Otago exercise combined with action observation training on changes of the brain activity of the elderly. Design: Randomized controlled trial. Methods: Thirty elderly women in the experiment were included. Participants were randomly assigned to the Otago combined with action observation training group, the Otago exercise group, and the control group (10 in each group). The Otago combined with action observation training group and the Otago exercise group performed the strength and balance exercises of the Otago exercise program for 50 minutes three times a week for 12 weeks. The Otago combined with action observation training group underwent additional action observation training for the Otago movement for 20 minutes three times a week. No intervention was performed in the control group. PolyG-1 (LAXTHA Inc., Daejeon, Korea) was used to measure the changes in the brain activity following intervention. One-way analysis of variance was used to compare the effects among the groups and a post-hoc test was performed. Results: The relative mu rhythms in the F3, C3, and C4 regions were significantly increased in the Otago combined with action observation training group. Relative beta wave activity in the Fp1, F3, F3, and C3 regions was significantly increased in the Otago combined with action observation training group (p<0.05). Conclusion: The results indicated that the Otago exercise combined with action observation training was effective for promoting the brain activity of the elderly.

Direct Effect of a Hot Environment on Ruminal Motility in Sheep

  • Sunagawa, Katsunori;Arikawa, Yuji;Higashi, Mika;Matsuda, Hiroshi;Takahashi, Hiroshi;Kuriwaki, Zyunichi;Kojiya, Zuikou;Uechi, Syuntoku;Hongo, Fujiya
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.859-865
    • /
    • 2002
  • The aim of this research was to clarify the direct effects of a hot environment on ruminal motility in sheep fed twice a day. In the first experiment, in order to equalize variable factors excluding the ambient temperature between the thermoneutral environment ($23^{\circ}C$, relative humidity 80%) and the hot environment ($32^{\circ}C$, relative humidity 80%), sheep were fed equal amounts of the same quality feed twice a day. The sheep were allowed free access to water for the duration of the two one-hour feeding periods (10:00 am-11:00 am, 5:00 pm-6:00 pm). On the fourth day after exposure to the hot environment, the frequency and strength of ruminal contractions were continuously recorded between 9:30 am and 11:00 pm. Prior to the exposure to a hot environment the frequency and strength of ruminal contractions were recorded in a thermoneutral environment during the period 9:30 am-11:00 pm. In the second experiment, in order to maintain the stomach content of the sheep at equal levels in both environments, the sheep were fed equal amounts of the same quality feed twice a day. Following the completion of the two one-hour feeding periods, a fixed amount of warm water was infused into the rumen. Rumen motility was then recorded during the same period as for the first experiment (9:30 am-11:00 pm). In the first experiment, when the frequency of ruminal contractions prior to (24, 24 frequency/15 min), during (48, 47 frequency/min) and after (22, 19 frequency/min) both the morning and afternoon feeding in a hot environment was compared with the values from the thermoneutral environment (20, 22; 50, 50; 21, 20 frequency/min), there was found to be no difference. However, the strength of ruminal contractions after morning and afternoon feeding (3.7, 3.1 mm Hg) in the hot environment decreased significantly in comparison with the thermoneutral environment (4.3, 3.8 mm Hg). In the second experiment, the frequency of ruminal contractions in the hot environment was not significantly different from that in the thermoneutral environment. The strength of ruminal contractions after ruminal infusion of warm water in the hot environment (morning: 4.6, afternoon: 4.5 mm Hg) was significantly lower than that in the thermoneutral environment (morning: 5.6, afternoon: 5.0 mm Hg). The results suggest that a hot environment acts directly on the strength of ruminal contractions in sheep fed twice a day rather than on the frequency.

Liquefaction Resistance of Gravel-Sand Mixtures (자갈-모래 혼합토의 액상화 거동)

  • Kim, Bang-Sig;Kang, Byung-Hee;Yoon, Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.47-56
    • /
    • 2007
  • In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.

Study on mechanical properties of Yellow River silt solidified by MICP technology

  • Yuke, Wang;Rui, Jiang;Gan, Wang;Meiju, Jiao
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.347-359
    • /
    • 2023
  • With the development of infrastructure, there is a critical shortage of filling materials all over the word. However, a large amount of silt accumulated in the lower reaches of the Yellow River is treated as waste every year, which will cause environmental pollution and waste of resources. Microbial induced calcium carbonate precipitation (MICP) technology, with the advantage of efficient, economical and environmentally friendly protection, is selected to solidify the abandoned Yellow River silt with poor mechanical properties into high-quality filling material in this paper. Based on unconfined compressive strength (UCS) test, determination of calcium carbonate (CaCO3) content and scanning electron microscope (SEM) test, the effects of cementation solution concentration, treatment times and relative density on the solidification effect were studied. The results show that the loose silt particles can be effectively solidified together into filling material with excellent mechanical properties through MICP technology. The concentration of cementation solution have a significant impact on the solidification effect, and the reasonable concentration of cementation solution is 1.5 mol/L. With the increase of treatment times, the pores in the soil are filled with CaCO3, and the UCS of the specimens after 10 times of treatment can reach 2.5 MPa with a relatively high CaCO3 content of 26%. With the improvement of treatment degree, the influence of relative density on the UCS increases gradually. Microscopic analysis revealed that after MICP reinforcement, CaCO3 adhered to the surface of soil particles and cemented with each other to form a dense structure.

Evaluating the effects of the inclinations of rock blocks on the stability of bimrock slopes

  • Khorasani, Emad;Amini, Mehdi;Hossaini, Mohammad Farouq;Medley, Edmund
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 2019
  • The process of slope stability analysis is one of the most important stages in design of some civil and mining projects. Bimslopes are made from bimrocks (block-in-matrix rocks) where rocky blocks are distributed in a bonded matrix of finer texture. These kind of slopes are often seen in weathered and near-surface depths. Previous studies have shown that VBP (Volumetric Block Proportion) is one of the most significant factors affecting bimrocks strength and consequently the stability of bimslopes. In this paper, the influence of block inclinations on bimslope stability have been investigated. For this purpose, 180 theoretical models have been made with various VBPs, all of them have a specified block size distribution. These bimslopes contain blocks with differing dips relative the slope inclination. Also for each kind of block inclination, 10 different blocks arrangements have been modeled. The Finite Element Method (FEM) was used to analysis the stability of these bimslopes models. The results showed the inclination of blocks has a strong impact on the Safety Factor and stability of bimslopes. When the difference in angle of dip of blocks relative to the slope angle is maximum, the Safety Factor of bimslopes tends to be a maximum compared with the matrix-only state. Furthermore, with increasing VBP of bimslopes stability increases. The graphs obtained from this study could be used for preliminary guidance in the projects design with bimslopes.

Effects of Pressure on Properties of SiC-$ZrB_2$ Composites through SPS (SPS법에 의한 SiC-$ZrB_2$ 복합체의 특성에 미치는 압력의 영향)

  • Shin, Yong-Deok;Lee, Jung-Hoon;Kim, Chul-Ho;Jin, Beom-Soo;Wu, Na
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1449-1450
    • /
    • 2011
  • The SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol.%) mixture of zirconium diboride($ZrB_2$) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering(SPS) under argon atmosphere at 50MPa(P50) and 60MPa(P60) pressure. The relative density, 94.13% of P60 sample was lower than that, 94.75% of P50 sample. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed via x-ray diffraction (hereafter, XRD) analysis. The trend of flexural strength of SiC-$ZrB_2$ composites were in accordance with the relative density. The properties of a SiC-$ZrB_2$ composites through SPS under argon atmosphere were positive temperature coefficient resistance in the temperature range from $25^{\circ}C$ to $500^{\circ}C$, and electrical resistivity of P50 and P60 sample were $6.75{\times}10^{-4}$ and $7.22{\times}10^{-4}{\Omega}{\cdot}cm$ at room temperature, respectively.

  • PDF