DOI QR코드

DOI QR Code

Liquefaction Resistance of Gravel-Sand Mixtures

자갈-모래 혼합토의 액상화 거동

  • Published : 2007.10.31

Abstract

In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.

본 연구에서는 자갈혼합률을 다르게 준비한 자갈-모래 혼합시료가 등방압밀 및 $K_0$-이방압밀 상태에서 나타나는 액상화거동에 대해서 연구하였다. 이를 위하여 자갈혼합률이 다른 자갈-모래 혼합토 공시체를 100kPa의 연직응력으로서 상대밀도가 40% 되도록 등방압밀 및 $K_0$-이방압밀 시킨 후 반복삼축시험을 수행하였다. 또한 자갈혼합률이 0%, 10%, 20%, 30%인 공시체에 100 kPa의 연직응력으로서 간극비가 0.7이 되도록 등방압밀 후 반복시험도 실시하였다. 시험결과 동일한 상대밀도(Dr=40%)를 가지는 자갈-모래 혼합토 공시체의 간극비는 자갈혼합률이 증가할수록 감소하다가 약 70%를 저점으로해서 다시 증가한다. 그러나 이 경계혼합률 이하에서는 자갈입자 사이를 채우고 있는 모래의 간극비는 자갈혼합률이 증가할수록 증가한다. 상대밀도가 일정한 (Dr=40%)등방압밀 공시체에 있어서 자갈혼합률이 비교적 낮은 경우(GC=0%, 20%, 40%)에는 반복하중에 의해서 일어나는 간극수압과 축변형률 거동이 비교적 높은 간극비로 인해서 느슨한 모래의 거동을 나타내나, 자갈혼합률이 높은 경우(GC=70%)에는 간극수압과 축변형률 거동이 조밀한 모래의 거동과 비슷한 경향을 보인다. 또한 간극비가 일정한(e=0.7) 등방압밀 공시체에 있어서 자갈혼합률이 높을수록 축변형률과 간극수압 거동은 느슨한 모래의 거동을 보이며 자갈혼합률이 낮을수록 축변형률 거동은 조밀한 모래의 거동을 나타낸다. 등방압밀 공시체의 액상화강도는 경계혼합률(GC=70%)이하의 범위에서는 상대밀도가 일정한 경우에는 자갈혼합률이 증가할수록 증가하며 간극비가 일정한 경우는 자갈혼합률이 증가할수록 감소한다. 따라서 자갈-모래 혼합토의 액상화강도는 예상과는 달리 자갈 입자 사이를 채우고 있는 모래의 상대밀도 보다는 혼합토의 전체적인 상대밀도 및 간극비에 의해서 결정된다는 사실이 확인되었다. $K_0$-이방압밀 공시체의 간극수압과 축변형률 거동은 반복응력이 어느 정도의 응력반전을 포함하고 있는데도 불구하고 응력반전이 없는 경우의 사질토의 거동을 나타낸다. 즉 응력반전량이 반복응력 진폭의 약 10%인데도 불구하고 반복변형률은 비슷하나 영구변형률이 크게 증가하며 또한 간극수압비는 1.0에 미달하여 초기액상화가 일어나지 않는다. 그리고 액상화강도는 자갈촌합률이 증가할수록 0%에서 40%까지의 범위에서는 증가하나 그 이상에서는 감소하는 경향을 보인다. 결론적으로 자갈-모래 혼합토의 반복거동은 자갈혼합량, 간극비, 상대밀도 그리고 압밀상태와 같은 요인에 의해 결정된다.

Keywords

References

  1. Banerjee, N.G., Seed, H.B. and Chan, C.K. (1979), 'Cyclic Behavior of Dense Coarse-Grained Material in Relation to the Seismic Stbility of Dams', EERC Report No. UCB/EERC-79/13, Univ. of California, Berkeley, Calif
  2. Bowles, J.E. (1970), Engineering Properties of Soils and Their Measurement, McGraw-Hill Book Company, Univ. of California, Berkeley
  3. Evans, M. D., Seed, H. B. and Seed, R. B. (1992), 'Membrane compliance and Liquefaction of Sluiced Gravel Specimens', Journal the of Geotechnical Engineering, ASCE, Vol.118, No.6, pp.856-872 https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(856)
  4. Evans, M. D. and Rollins, K. M. (1999), 'Development in gravelly soil liquefation and dynamic behavior', Proceedings of the International Workshop on the Physics and Mechanics of Soil, pp.91-102
  5. Evans, M. D. and Zhou, S. (1995), 'Liquefaction behavior of sand-gravel composition', Journal of Geotechnical Engineering, ASCE, Vol.121, No.3, pp.287-298 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:3(287)
  6. Haga, K. (1984), 'Shaking Table Tests For Liquefaction Of Gravel-Containing Sand', Bachelor Thesis, Dept. of Civil Eng., Univ. of Tokyo, (in Japanese)
  7. Hynes, M. E. (1988), Pore pressure generation characteristics of gavel under undrained cyclic loading, PhD Dissertation, Univ. of California, Berkeley, Calif
  8. Kokusho, T. and Hiraoka, R. (2004), 'Undrained shear strength of granular soils with different particle gradation', Journal of Geotechnical and Geoenvironmental Engineering, Vol.130, No.6, pp. 621-629 https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(621)
  9. Nicholson P. G., Seed, R. B. and Anwar, H. A. (1993), 'Elimination of Membrane Compliance in Undrained Triaxial Testing, Measurement and Evaluation', Canadian Geotechnical Journal, Vol.30, No.5, pp.727-738 https://doi.org/10.1139/t93-065
  10. Seed, R. B., Anwar, H. A. and Nicholson, P. G. (1989), 'Elimination of membrane compliance effects in undrained testing of gravelly soils', Proc., 12th into Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, pp.111-114
  11. Siddiqi, F. H. (1984), Strength evaluation of cohesionless soils with oversized particles, PhD Dissertation, University of California, Davis, Calif
  12. Ueng, T. S., Lin, M. L., Chu, C. M. and Lin J. S. (2002), 'Dynamic characteristics of soils in yuan-lin liquefaction area', Journal of the Chinese Institute of Engineers, Vol.25, No.5, pp.555-565 https://doi.org/10.1080/02533839.2002.9670730
  13. Vaid, Y. P. and Chern J. D. (1983), 'Effect of static shear on resistance to liquefaction', Soil and Foundation Engineering, Vol.23, No.1, pp.47-60 https://doi.org/10.3208/sandf1972.23.47
  14. Wang, W. (1984), 'Earthquake damage to earth and Levees in relation to soil liquefaction', Proc. of the Int. Conf. on Case Histories on Geotech. Engrg., Vol.1, Univ. of Missouri-Rolla, Rolla, pp.511-521
  15. Wong. R. T., Seed, H. B. and Chan, C. K. (1974), Liquefaction of gravelly soils under cyclic loading conditions, Rep. No. UCB/EERC-7411, Earthquake Engineering Research Center, Coli. of Engrg., Univ. of California, Berkeley, Calif