• Title/Summary/Keyword: relative stiffness

Search Result 373, Processing Time 0.025 seconds

A Study on the Vibration Behavior of Building Structures due to Undergroud Blasting (지중발파에 의한 건물의 진동 거동에 관한 연구)

  • 조병윤;문형구
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 1996
  • In order to analyze the effects of ground vibration caused by underground blasting having an effect on structure, the particle velocity and acceleration are calculated by using DYNPAK program. The DYNPAK program analyzes nonlinear transient dynamic problem and adopts the very popular and easily implemented, explicit, central difference scheme. In this program, the material behavior is assumed to be elasto-viscoplastic. Using the particle acceleration history, modal analysis method is applied to the forced vibration response of multiple-degree-of-freedom(MDOF) systems using unclupled equations of motion expressed in terms of the system's natural circular frequencies and modal damping factors. AS a means of evaluating the vibration behavior of building structure subjected to underground blasting, the time response of the displacements relative to the ground of five-story building is determined. It is concluded that the amount of explosives consumed per round, the location of structure, the properties of rock medium, the stiffness fo structure, etc. act on the important factors influencing on the safety of building and that the response of a structure subjected to a forced excitation can usually be obtained with reasonable accuracy by the modal analysis of only a few mode of the lower frequencies of the system.

  • PDF

Multichannel Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 다채널 능동제어)

  • Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.

A Study on Oxidizer Effects in Tungsten CMP (텅스텐 CMP에서 산화제 영향에 관한 연구)

  • Park, Boumyoung;Lee, Hyunseop;Park, Kiyhun;Jeong, Sukhoon;Seo, Heondeok;Jeong, Haedo;Kim, Hoyoun;Kim, Hyoungjae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.787-792
    • /
    • 2005
  • Chemical mechanical polishing(CMP) has become the process of choice for modem semiconductor devices to achieve both local and global planarization. CMP is a complex process which depends on numerous variables such as macro, micro and nano-geometry of pad, relative velocity between pad and wafer stiffness and dampening characteristics of pad, slurry, pH, chemical components of slurry, abrasive concentration, abrasive size, abrasive shape, etc. Especially, an oxidizer of chemical components is very important remove a target material in metal CMP process. This paper introduces the effect of oxidizer such as $H_2O_2,\;Fe(NO_3)_3\;and\;KIO_3$ in slurry for tungsten which is used in via or/and plug. Finally the duplex reacting mechanism of $oxidizer(H_2O_2)$ through adding the $catalyst(Fe(NO_3)_3)$ could acquire the sufficient removal rate in tungsten CMP.

A Study on the Buckling Behavior of the Web of Box Girders (상자형 복부판의 좌굴 거동에 관한 연구)

  • Lee, Sang Woo;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.37-49
    • /
    • 1997
  • The buckling behavior of the web of steel girders are largely dependent on the size and the location of stiffeners and the restraining effect of top and bottom flanges. Elastic and inelastic buckling analyses based or the Spline Finite Strip Method were executed to study the stiffening effect of the longitudinal stiffener on the web of box girders and to find how the top and bottom flanges had effects on the web, where geometric boundary conditions were limited by both hinged, both fixed and the flange sections. The basic assumption for the longitudinal end boundary conditions was that the vertical stiffeners had the rigidity enough to force nil deflection line on the web panel so that the junction line between web and vertical stiffener was assumed to be hinged boundary conditions. The provisions on the longitudinal stiffener of the plate and box girders of the Korean Standard Highway Bridge Specifications(1995) and AASHTO Specifications(1994 LRFD) were compared with the results obtained numerically for the various longitudinal stiffener size of box girders. Simple equations and design curves for the longitudinal stiffener of the web were proposed for the practical use.

  • PDF

Development of Laminar Box Manufacturing Technique for Earthquake Engineering (내진 연구를 위한 전단상자 제작기술 개발)

  • 이용재
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.100-107
    • /
    • 2001
  • One major problem in the model testing is the boundary effect and size effect caused by the limit in the size of the container. To overcome this problem, various types of laminar boxes are gradually manufactured and used in the shaking table test, which ideally has zero stiffness to horizontal shear. In this study, a small-scale laminar box is manufactured, which is composed of 6 thin aluminum rectangular hollow plates, and its inside dimensions are 300 mm length by 200 mm width by 350 mm depth. Shaking table tests are performed both with the laminar box and the rigid box under the same conditions, where displacements and accelerations are measured at various points of the box and model ground. As result of analyzing the measured data, during the propagation of input seismic motion from the bottom to the ground surface, the relative displacement of the model ground and the amplification of acceleration is hardly amplified in the rigid box. Because of the effect of stress waves reflecting from the rigid wall, the acceleration is slightly decreased at the edge in the rigid box. The laminar box, manufactured in this study, has a problem in that the soil behavior at the edge of ground surface is affected by the inertia force of the top layer due to its excessive self-weight.

  • PDF

Dynamic design of piezoelectric structures for an efficient tactile feedback of index finger on touch screen (검지의 효율적 화면접촉감응을 위한 압전-구조물계의 동적설계)

  • Park, Young-Min;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.280-281
    • /
    • 2009
  • Piezoelectric vibrators can be good replacements of electric motors to excite touch screen of a mobile device owing to small volume and low power consumption. One problem to be solved yet for real application is larger excitation force or moment than available currently. More efficient excitation by a piezoelectric vibrator could be achieved by operating at one of resonance frequencies of the system, which must also be as close as possible to frequency range where index finger is most sensitive and increasing transmission force or moment at that frequency. In this study, dynamic models are derived for the piezoelectric exciter and an adhesive viscoelastic layer, which connect the exciter to the screen. The adhesive layer is modeled as distributed stiffness by considering its geometric shape to relative to the piezoelectric exciter. Then, equations of motion for the piezoelectric exciter and the adhesive layer are derived using Hamilton's principle. Based on this model, dynamic characteristics of the exciter will be designed to maximize the force or moment transmitted onto the screen structure.

  • PDF

Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model (반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계)

  • Park, Chan-Gyeong;Lee, Gwang-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.

Effect of higher order terms of Maclaurin expansion in nonlinear analysis of the Bernoulli beam by single finite element

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Mirsalehi, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.949-966
    • /
    • 2016
  • The second order analysis taking place due to non-linear behavior of the structures under the mechanical and geometric factors through implementing exact and approximate methods is an indispensible issue in the analysis of such structures. Among the exact methods is the slope-deflection method that due to its simplicity and efficiency of its relationships has always been in consideration. By solving the differential equations of the modified slope-deflection method in which the effect of axial compressive force is considered, the stiffness matrix including trigonometric entries would be obtained. The complexity of computations with trigonometric functions causes replacement with their Maclaurin expansion. In most cases only the first two terms of this expansion are used but to obtain more accurate results, more elements are needed. In this paper, the effect of utilizing higher order terms of Maclaurin expansion on reducing the number of required elements and attaining more rapid convergence with less error is investigated for the Bernoulli beam with various boundary conditions. The results indicate that when using only one element along the beam length, utilizing higher order terms in Maclaurin expansion would reduce the relative error in determining the critical buckling load and kinematic parameters in the second order analysis.

Light-gauge composite floor beam with self-drilling screw shear connector: experimental study

  • Erdelyi, Szilvia;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.255-274
    • /
    • 2009
  • This paper presents an experimental study of a newly developed composite floor system, built up from thin-walled C-profiles and upper concrete deck. Trapezoidal sheeting provides the formwork and the fastening of the sheet transmits the shear forces between the C-profiles and the deck. The modified formation of the standard self-drilling screw in the beam-to-sheet connection is applied as shear connector. Push-out tests are completed to study the composite behaviour of the different connection arrangements. On the basis of the test results the behaviour is characterized by the observed failure modes. The design values of the connection stiffness and strength are calculated by the recommendation of Eurocode 4. In the next phase of the experimental study six full-scale composite beams are tested. The global geometry is based on the proposed geometry of the developed floor system. The applied shear connections are selected as the most efficient arrangements obtained from the push-out tests. The experimental behaviour of the composite beams are discussed and evaluated. As a conclusion of the experimental study the Eurocode 4 plastic design method is validated for the developed composite floor.

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.