• Title/Summary/Keyword: relative navigation

Search Result 349, Processing Time 0.029 seconds

A Relative Importance Evaluation of Bridge Navigational Equipment Using AHP (AHP를 이용한 선교항해장비의 상대적 중요도 평가)

  • Kwon, So-Hyun;Jeong, Woo-Lee;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • According to IMO, MASS is defined as a vessel operated at various levels independent of human interference. The safety navigation support service for MASS is designed to improve the safety and efficiency of MASS by developing public services on shore for ship arrivals/departures and for cargo handling. The safety navigation support service consists of a total of six types of services: autonomous operation, berthing/unberthing/mooring, cargo handling and ship arrival/departure service, PSC inspection, condition monitoring, and accident response support services. In order to support accident response service, the relative importance of a bridge navigational equipment was assessed by stratifying the navigation system to provide safe and efficient support services by objective judgment through specific and quantitative methods using AHP, one of decision-making methods used by an expert group. The survey was conducted by dividing the bridge navigational equipment into depth, location, and speed information. As a result of applying the AHP method, the importance of depth, location, and speed information was assessed. The relative importance of each equipment for providing location information was also assessed in order of Radar, DGPS, ECDIS, Gyro compass, Autopilot, and AIS. This was similar to survey results on the utilization of each operator's preference and its impact on marine accidents.

Cognitive Virtual Network Embedding Algorithm Based on Weighted Relative Entropy

  • Su, Yuze;Meng, Xiangru;Zhao, Zhiyuan;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1845-1865
    • /
    • 2019
  • Current Internet is designed by lots of service providers with different objects and policies which make the direct deployment of radically new architecture and protocols on Internet nearly impossible without reaching a consensus among almost all of them. Network virtualization is proposed to fend off this ossification of Internet architecture and add diversity to the future Internet. As an important part of network virtualization, virtual network embedding (VNE) problem has received more and more attention. In order to solve the problems of large embedding cost, low acceptance ratio (AR) and environmental adaptability in VNE algorithms, cognitive method is introduced to improve the adaptability to the changing environment and a cognitive virtual network embedding algorithm based on weighted relative entropy (WRE-CVNE) is proposed in this paper. At first, the weighted relative entropy (WRE) method is proposed to select the suitable substrate nodes and paths in VNE. In WRE method, the ranking indicators and their weighting coefficients are selected to calculate the node importance and path importance. It is the basic of the WRE-CVNE. In virtual node embedding stage, the WRE method and breadth first search (BFS) algorithm are both used, and the node proximity is introduced into substrate node ranking to achieve the joint topology awareness. Finally, in virtual link embedding stage, the CPU resource balance degree, bandwidth resource balance degree and path hop counts are taken into account. The path importance is calculated based on the WRE method and the suitable substrate path is selected to reduce the resource fragmentation. Simulation results show that the proposed algorithm can significantly improve AR and the long-term average revenue to cost ratio (LTAR/CR) by adjusting the weighting coefficients in VNE stage according to the network environment. We also analyze the impact of weighting coefficient on the performance of the WRE-CVNE. In addition, the adaptability of the WRE-CVNE is researched in three different scenarios and the effectiveness and efficiency of the WRE-CVNE are demonstrated.

Mono-Vision Based Satellite Relative Navigation Using Active Contour Method (능동 윤곽 기법을 적용한 단일 영상 기반 인공위성 상대항법)

  • Kim, Sang-Hyeon;Choi, Han-Lim;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.902-909
    • /
    • 2015
  • In this paper, monovision based relative navigation for a satellite proximity operation is studied. The chaser satellite only uses one camera sensor to observe the target satellite and conducts image tracking to obtain the target pose information. However, by using only mono-vision, it is hard to get the depth information which is related to the relative distance to the target. In order to resolve the well-known difficulty in computing the depth information with the use of a single camera, the active contour method is adopted for the image tracking process. The active contour method provides the size of target image, which can be utilized to indirectly calculate the relative distance between the chaser and the target. 3D virtual reality is used in order to model the space environment where two satellites make relative motion and produce the virtual camera images. The unscented Kalman filter is used for the chaser satellite to estimate the relative position of the target in the process of glideslope approaching. Closed-loop simulations are conducted to analyze the performance of the relative navigation with the active contour method.

Combined GPS/GLONASS Relative Receiver DCB Estimation Using the LSQ Method and Ionospheric TEC Changes over South Korea

  • Choi, Byung-Kyu;Yoon, Ha Su;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • The use of dual-frequency measurements from the Global Navigation Satellite System (GNSS) enables us to observe precise ionospheric total electron content (TEC). Currently, many GNSS reference stations in South Korea provide both GPS and GLONASS data. In the present study, we estimated the grid-based TEC values and relative receiver differential code biases (DCB) from a GNSS network operated by the Korea Astronomy and Space Science Institute. In addition, we compared the diurnal variations in a TEC time series from solutions of the GPS only, the GLONASS only, and combined GPS/GLONASS processing. A significant difference between the GPS only TEC and combined GPS/GLONASS TEC at a specific grid point over South Korea appeared near the solar terminator. It is noted that GLONASS measurements can contribute to observing a variation in ionospheric TEC over high latitude regions.

Evaluation of RTK Methods for Moving Vehicles and Practical Recommendations

  • Kim, Sae-Kyeol;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.253-262
    • /
    • 2021
  • Global Navigation Satellite Systems (GNSS) based precise positioning using Real Time Kinematic (RTK) technique has been proposed as an enabler of the formation operation of moving vehicles. In RTK methods, the integer ambiguity of GNSS carrier phase measurements must be resolved. Although there have been many proposed algorithms for the integer ambiguity resolution, the widelane combination of carrier phase measurements and LAMBDA methods have gained the most popularity in literatures when dual frequency GNSS measurements were used. In this paper, we evaluated five alternative methods to determine relative positions of moving base and rover receivers; the round-off scheme of widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with dual frequency measurements. The paper presented the performance of each method using flight test data, which showed their strength and weakness in the aspects of time-to-first-fix, ambiguity resolution success ratio, and relative position errors. Based on that, we provided practical recommendations of RTK operations for moving vehicles.

Navigation of Unmanned Vehicle Using Relative Localization and Magnetic Guidance (상대위치인식과 자계안내를 이용한 무인주행차량의 주행기법)

  • Lee, Yong-Jun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.430-435
    • /
    • 2011
  • In this paper, a navigation technology of an unmanned vehicle using relative localization and magnetic guidance is proposed. Magnetic guidance system had been developed as a robust autonomous driving technology as long as magnetic fields on the path are detected. Otherwise, if magnetic fields were not detected due to some reasons, the vehicle could not drive. Therefore, in order to overcome the drawback, we propose that relative localization would be combined to magnetic guidance system. To validate the usefulness of the proposed method, a robotic vehicle was set up with the magnetic guidance system and the relative localization. In addition, the unmanned driving test was realized on the road without the magnetic fields so that the proposed method is verified by the experiment.

A Study on the evaluation of the safety of berthing maneuver by the Analytic Hierarchy Process (계측분석법에 의한 선박 접리안 안전성의 평가방안)

  • 구자윤;이철영;우병구;전상엽
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.33-47
    • /
    • 1994
  • On developing port system, the performance tests of system in relation to ship maneuver generally consists of the three parts: the channel transit, the manoeuvring in a turning basin and the docking/undocking. The quantifications of risk of an accident has priviously been difficult due to the low occurrence of accidents relative to the number of transits. Additionally, accident statistics could not be related port system because of the large number of factors contributing to the accident. such as human error, equipment failure, visibility, light, traffic. etc. In case of the channel transit, "Relative Risk Factor(RRF)" or "Relative Risk Factor for Meeting Traffic" was proposed as the as the measures derived to quantify the relative risk of accident by M.W.Smith. This factor measure the tracking performance, the turning performance and the passing performance at meeting traffic. On the other hand, the safety of berthing maneuver is not measured with a few evaluating factors as controlled due to complex controllabilites such as steering, engine, side thrusters or tugs. This work, therefore, aims to propose the evaluating measure by the Analytic Hierarchy Process(AHP). Six experimental scenarios were establised under the various environmental conditions as independent variables. In every simulation, the difficulty of maneuver was scored by captain and compared with AHP scores. The results show almost same and from which the weights of eight evaluating factors could be fixed. Additionally, the limit value of relative factor in berthing safety to six scenarios could be estimated to 0.11.e estimated to 0.11.

  • PDF

A Study on 2-Dimensional Sound Source Tracking System IV - Mainly on Approximation of the Relative Bearing and Distance - (2차원적 음원추적에 관한 연구IV -음원위치의 근사적 결정법을 중심으로 -)

  • 문성배;전승환
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.371-379
    • /
    • 2001
  • We have reported the new measurement system which was substituted digital filter for the analog filter in order to develop the optimal system that could find the time delay between each sensors with high accuracy. And also we have confirmed through the experiments that the accuracy of measurements were differentiated by the methods what kind of digital filter had been adopted. This paper suggests two algorithms which approximate the sound source's bearing and distance. One is that sound source's relative bearing can be approximately regarded as the gradient of hyperbolic asymptote, the other is that the source's range can be approximated under the condition of a long range source relative to the sensor's interval. And a series of experiments were carried out with the source's distance 22.42meters and the random bearing interval within the limits of $-90^{\circ}$~$+90^{\circ}$. As a result, we have recognized that the approximation methods could measure the bearing and distance with higher accuracy than the method using trigonometric relation could do.

  • PDF

A Study on the Relative Bow Motion in Irrugular Sea (불규칙해면에서 선수부의 상대운동에 관한 연구)

  • 윤점동;김종훈;김기윤
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.2
    • /
    • pp.37-55
    • /
    • 1989
  • When a ship is sailing on the sea, she has the six-degrees of freedom of motion. It means that she meets a lot of dangerous situations. Especially, when the VLCC is travelling in irregular sea, the slamming, the deck-wetness and the propeller racing are occured with the sea state she is on. These are the representative steps that a heave-to and a scudding are used for a ship building , but for a predominance in both. The author intends to clarify this problem theoretically. The methods of statistical calculation are based with the ITTC spectral formulation and with the assumption that the wave height histogram follows the Rayleigh distribution. In this study, the author gives an attention on the relative bow motion to a wave in the irregular sea. It is verified that the relative diplacement at the bow to sea level in the following sea is less than that in the head sea. It is confirmed that, therefore, one have to sail with scudding when he is threatened to heave-to at a rough sea. But he must bear the propeller racing in mind in the cases.

  • PDF

Design and Algorithm Verification of Precision Navigation System (정밀항법 시스템 설계 및 알고리즘 검증)

  • Jeong, Seongkyun;Kim, Taehee;Lee, Jae-Eun;Lee, Sanguk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • As GNSS(Global Navigation Satellite System) is used in various filed, many countries establish GNSS system independently. But GNSS system has the limitation of accuracy and stability in stand-alone mode, because this system has error elements which are ionospheric delay, tropospheric delay, orbit ephemeris error, satellite clock error, and etc. For overcome of accuracy limitation, the DGPS(Differential GPS) and RTK(Real-Time Kinematic) systems are proposed. These systems perform relative positioning using the reference and user receivers. ETRI(Electronics and Telecommunications Research Institute) is developing precision navigation system in point of extension of GNSS usage. The precision navigation system is for providing the precision navigation solution to common users. If this technology is developed, GNSS system can be used in the fields which require precision positioning and control. In this paper, we introduce the precision navigation system and perform design and algorithm verification.