• Title/Summary/Keyword: relative moisture content

Search Result 335, Processing Time 0.029 seconds

Dynamic Viscoelasticity of Hot Pressed Wood (열압재목재(熱壓縡木材)의 동적점탄성(動的粘彈性))

  • Hong, Byung-Wha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.3-10
    • /
    • 1984
  • In hot pressed wood of Pseudotsuga menziesii compressed to 0 - 50 percent at temperature 60 - $180^{\circ}C$, relative humidity conditions affecting dynamic Young's modulus of elasticity and internal friction were investigated. The results obtained are summarized as follows: Moisture absorption of the hot pressed wood decreased with increasing press temperature, but there was no effect on the amount of compression. Thickness swelling dereased with increasing press temperature, and increased with increasing amount of compression. In general, dynamic Young's modulus of elasticity showed a straight line with increasing specific gravity of specimens. Dynamic Young's modulus of elasticity decreased with increasing moisture content, but internal friction increased with increasing amount of moisture content. Dynamic Young's modulus of R specimens pressed in the radial direction showed hight values than T specimens pressed in the tangential direction.

  • PDF

Browning and Sorption Characteristics of Dried Garlic Flakes with Relative Humidity and Storage Temperature (상대습도와 저장온도에 따른 건조마늘 플레이크의 갈변 및 흡습특성)

  • Kim, Hyun-Ku;Jo, Kil-Suk;Kang, Tong-Sam;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.176-180
    • /
    • 1987
  • The sorption characteristics of dried garlic flakes stored at various relative humidity and storage temperature were studied. At low relative humidity below RH 51%, the sorption equilibrium was easily attained, whereas at higher relative humidity above RH 67%, the flakes were browned by higher equilibrium moisture content. The flakes were browned at relative humidity above 67% at $20^{\circ}C$ and $35^{\circ}C$, above 84% at $5^{\circ}C$, respectively. The moisture contents of monolayer value for the flakes were ranging from 5.80% to 6.20% (DB) with varying temperatures. And the necessity of moisture-proof packaging material suggested for the long term storage of the flakes because the lower moisture content and storage temperature, the higher driving force of wetting. Regression equation for browning rate prediction with relative humidity and storage temperature of the flakes was determined.

  • PDF

Effect of Moisture in Arc Welding Electrode on Mechanical Properties of Weld Metal (아아크 용접봉 피복제 의 함수량 이 용접금속 의 기계적 성질에 미치는 영향)

  • 윤희만;김연식;박종은
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.30-40
    • /
    • 1984
  • Moisture content in the coating of an electrode is known to cause defects such as porosities, fish eyes and cracks in the weld metal, however, quantitative relationship between them is not clearly understood. In this study widely consumed and the most common type of arc welding rods such as ilmenite and low hydrogen type were chosen for the investigation, and attempts were made to correlate the relationship between the mechanical properties and gas contents when welding was carried out with electrodes of various moisture contents. As the relative humidity changed from 70% to 92%, it was determined that moisture content to reach saturation was in the range of 0.6~6.8%. As the moisture content in the electrode coating was increased, the amount of gaseous components (H, O, N) in the weld metal was accordingly increased, especially diffusible hydrogen showed prominent effect, i.e. it increased proportionally to the increase of the moisture content. The mechanical properties of the weld metal was observed to become more inferior as the diffusible hydrogen was greater. It was determined for ilmenite type of electrode that the increase of hydrogen content was approximately 1.8ml per unit weight percent increase of moisture and also tensile strength resulted lowering from $45.3kg/\textrm{mm}^2$ to $42.7kg/\textrm{mm}^2$ as moisture content increased from 0.7% to 6.8%. For low hydrogen type the increase of the hyrogen was about 2.4ml per unit percent of moisture and tensile strength decreased from $63.0kg/\textrm{mm}^2$ to $53.8kg/\textrm{mm}^2$ particularly in the region of moisture content 0.1~4.2%.

  • PDF

Moisture Absorption Properties of Organic-Inorganic Nano Composites According to the Change of Epoxy Resins for Next Generation Semiconductor Packaging Materials (차세대 반도체용 유-무기 나노 복합재료의 에폭시 수지변화에 따른 흡습특성)

  • Kim, Whan Gun;Kim, Dong Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • Epoxy resins are widely used in microelectronics packaging such as printed circuit board and encapsulating for semiconductor manufacturing. Water can diffuse into and through the epoxy matrix systems and moisture absorption at boarding interfaces of matrix resin systems can lead to a hydrolysis at the interfaces resulting in delamination of encapsulating materials. In the study, the changes of diffusion coefficient and moisture content ratio of epoxy resin systems with nano-sized fillers according to the change of liquid type epoxy resins were investigated. RE-304S, RE-310S, RE-810NM and HP-4032D as a epoxy resin, Kayahard AA as a hardener, and 1B2MI as a catalyst were used in these epoxy resin systems. After curing, moisture content ratios were measured with time under the 85 and 85% relative humidity condition using a thermo-hydrostat. The maximum moisture absorption ratio and diffusion coefficient of EMC decrease with the filler content. It can be seen that these decreases are due to the increase of filler surface area and the decrease of moisture through channel with the content of nano-sized filler.

Seasoning of Commercial Wood Using Solar Energy (태양에너지를 이용한 유용목재의 건조)

  • Jung, Hee-Suk;Lee, Hyoung-Woo;Lee, Nam-Ho;Lee, Sang-Bong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.10-39
    • /
    • 1988
  • This study investigated the temperatures and relative humidities in the semi-greenhouse type solar dryer with a black rock-bed heat storage and without heat storage and outdoor temperature and relative humidity at 9 a.m. and 2 p.m.. A comparison was made of the drying rates, final moisture contents, moisture content distributions, casehardening stresses, drying defects, volumetric shrinkage of dried lumber for solar- and air-drying from the green condition of mixtures of Douglas-fir, lauan, taun, oak and sycamore 25mm- and 50 mm-thick lumber during the same period for four seasons, and heat efficiencies for solar dryer with and without the heat storage for saving of heat energy and the cost of lumber drying using the solar energy. The results from this study were summarized as follows: I. The mean weekly temperatures in the solar dryers were 3 to $6^{\circ}C$ at 9 a.m. and 9 to $13^{\circ}C$ at 2 p.m. higher than mean outdoor temperature during all the drying period. 2. The mean weekly relative humidities in the solar dryers were about 1 to 19% at 9 a.m. higher than the outdoor relative humidity. and the difference between indoor and outdoor relative humidity in the morning was greater than in the afternoon. 3. The temperatures and relative humidities in the solar dryer with and without the heat storage were nearly same. 4. The overall solar insolation during the spring months was highest and then was greater in the order of summer, atumm, and winter month. S. The initial rate of solar drying was more rapid than that of air drying. As moisture content decreased, solar drying rate became more rapid than that of air drying. The rates of solar drying with and without heat storage were nearly same. The drying rate of Douglas-fir was fastest and then faster in the order of sycamore, lauan, taun and oak. and the faster drying rate of species, the smaller differences of drying rates between thicknesses of lumber. The drying rates were fastest in the summer and slowest in the winter. The rates of solar drying during the spring were more slowly in the early stage and faster in the later stage than those during the autumn. 6. The final moisture contents were above 15% for 25mm-thick air dried and about 10% for solar dried lumber, but the mean final MCs for 50mm-thick lumber were much higher than those of thin lumber. The differences of final MC between upper and lower course of pile for solar drying were greater than those of pile for air drying. The differences of moisture content between the shell and the core of air dried lumbers were greater than those of solar dried lumber, smallest in the drying during summer and greatest in the drying during winter among seasons. 7. Casehardening stresses of 25mm- and 50mm-thick dried lumber were slight, casehardening stress of solar dried lumber was severer than that of air dried lumber and was similar between solar dried lumber with and without heat storage, Casehardening stresses of lumber dried during spring were slightest and then slighter in the order of summer, autumn, and winter. Casehardening stresses of Douglas -fir, sycamore and lauan were slight, comparing with those of taun and oak. 8. Maximum initial checks of 25mm-thick lumber occurred above and below fiber saturation point and those of 50mm-thick lumber occurred in the higher moisture content than thin lumber. As the moisture content decreased, most of checks were closed and didn't show distinct difference of the degree of checks among drying methods. The degree of checks were very slight in case of Douglas-fir and lauan, and severe in case of taun and oak. The degree of checks for 50mm-thick lumber were severer than those for 25mm-thick lumber. 9. The degree of warpage showed severe in case of oak and sycamore lumber, but no warping was found in case of Douglas-fir, lauan and taun. 10. The volumetric shrinkages of taun and oak were large and medium in case of Douglas-fir, lauan and sycamore. 11. Heat efficiencies of solar dryer with heat storage were 6.9% during spring, 7.7% during summer, 12.1% during autumn and 4.1% during winter season. Heat efficiency of solar dryer with heat storage was slightly greater than that of without heat storage. As moisture content of lumber decreased, heat efficiency decreased.

  • PDF

Experimental Investigations on Tensile Strength of Sand at Low Moisture Contents (저함수비 모래의 인장강도에 대한 실험적 연구)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.23-31
    • /
    • 2002
  • This study shows that tensile strength in moist sand clearly exists due to moisture and it is possible to simply and accurately measure the tensile strength of sands at low moisture contents. These measurements were made through the use of a newly developed direct tension apparatus and technique which are able to produce highly accurate results. The magnitudes of the tensile strengths of these moist and relatively clean sands are not equal to zero, as is widely assumed. Tensile strength increases with increasing moisture content and this trend is more noticeable at increasing relative densities. The influence of tensile strength in geotechnical problems was also examined by considering a simple rigid circular footing in sandy soil. It clearly shows that a small amount of tensile strength can significantly enhance the stability of a geotechnical system.

Changes of the Physical Properties of Corrugated Fiberboard Boxes for Fruit and Vegetable Packaging by Preservation Temperature and Relative Humidity (과채류 포장용 골판지 상자의 저장온도와 습도에 따른 물리적 특성 변화)

  • Lee, Myung-Hoon;Cho, Jung-Yeon;Shin, Jun-Seop
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.1
    • /
    • pp.46-53
    • /
    • 2002
  • This study was carried out to analyze the effects of preservation temperature and relative humidity to the physical properties of corrugated fiberboard boxes for fruit and vegetable packaging. The preservation temperature did not affect severely to physical properties of corrugated fiber-board. Relative humidity was a major cause of corrugated fiberboard box quality deterioration. The burst and compressive strengths of experimental boxes measured with Mullen high pressure tester and tong crush tester were decreased gradually as relative humidity increased from 55% to 75%. But, the strength properties slightly decreased relative humidity at 75% or higher. This tendency was the greater for single wall (SW) corrugated fiberboard box than that for double wall (DW). It is suggested that development of the water-resistant corrugated fiberboard and box be needed that can be used under the condition of low temperature and high moisture content, which are being employed in the cold chain system.

Studies on the moisture control of tobacco processed by using computer (컴퓨터에 의한 작업장 담배의 수분관리에 관한 연구)

  • Kim, Gi-Hwan;Han, Jeong-Seong;Joo, Yeong-Seok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.9 no.2
    • /
    • pp.95-104
    • /
    • 1987
  • 1. Under the current workroom conditions It is very difficult to control the moisture contents of raw materials in season of summer or winter. 2. The moisture absorption of the materials under the contributive conditions showed the efficiency of 65% in relative humidity and temperature of the currant workroom. 3, The results from this study, however , appeared the deviation of moisture content of the products by the order of 0.1% compared to the current deviation of 2.6~2.7%. 4. Equilibrium moisture contents of the tobacco was Inversely proportional to the temperature and directly related to the relative humidity of the workroom. 5. On the basis of the above results , the standard conditions of the workroom obtained from this study considering with the external temperature in winter could reduce energy by 17.4% through 38.4% .

  • PDF

Influence of temperature, time, and moisture content on rheology of tomatoes and pepper purees

  • Adeshina Fadeyibi;Zainab Ololamide Ayinla;Rasaq A. Ajiboye
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.199-209
    • /
    • 2024
  • This study explored how temperature, time, and moisture content affect the rheological properties (apparent viscosity, flow behavior index, and consistency coefficient) of stored tomato and pepper purees. These purees were prepared with moisture contents of 85%, 90%, and 95% (w/v) using the hot-break method and tested over 6 days at 2-day intervals and temperatures of 5℃, 10℃, and 15℃. Results displayed distinct ranges for apparent viscosity, consistency coefficient, and flow behavior indices: tomato puree (2,519.9-4,324.6 mPa·s, 258.0-550.6 mPa·Sn, 1.80-0.48) and pepper puree (2,105.6-4,562.0 mPa·s, 268.4-580.4 mPa·Sn, 0.22-0.48). The temperature and storage time had significant (p≤0.05) effects, but moisture content did not affect these properties. Flow behavior and consistency coefficients demonstrated relative variation with apparent viscosity, indicating pseudoplastic behavior. Optimal processing and storage conditions were identified within specific ranges: 13.21-14.42℃ for 2 days with 92.22-94.23% (w/v) moisture content for pepper, and 8.42-11.77℃ for 2-6 days with 85% (w/v) moisture for tomato.

Study on the Soil Compaction (part 3) on Soil Compaction (흙의 다짐에 관한 연구(3) <10번체 잔류량이 다짐에 미치는 영향>)

  • 강문묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.2
    • /
    • pp.1927-1936
    • /
    • 1970
  • This is a study on the influence of percent retaining of No. 10 sieve on soil compaction. Reviewing the test values in part 1 and part 2, a relative equation to predict maximum dry density and optimum moisture content was induced. Results of the study are as follow; 1. Maximum dry density increases according as percent retatining of No. 10 sieve increase untill 40%, but it decreases in more than 50%. 2. Maximum dry density has the greatest value at 25%, also it decreases according to increase or decrease at 25% in percent passing of No. 200 sieve. 3. Grain size distribution that Maximum dry density is largest, is 40% in 4.76mm to 2.0mm, 35% in 2.0mm to 0.074mm, 25% in lese than 0.074mm. 4. Correlation betwesn Maximum dry density and optimum moisture content made a curved line. The deviation between maximum dry density to be predicted from optimum moisture content and test values, is less than about 5%. 5. Range of deviation between optimum moisture content to be predicted from classification area and uniformity coefficient isless than about 20%, which belongs to range of moisture content that is correspondent with 95% of maximum dry density, generally.

  • PDF