• Title/Summary/Keyword: relative humidity (RH)

Search Result 345, Processing Time 0.023 seconds

The Adsorption Characteristics of a Granular Active Carbon by the Physical Properties (입상 활성탄의 물리적특성 변화에 따른 흡착특성)

  • 김덕기;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.84-89
    • /
    • 1996
  • The adsorption characteristics of active carbon used as a cartridge filler of organic vapor respirator were examined by humidity, particle size, challenge concentration and specific surface area. As a result, the 1% breakthrough time of Carbon Tetrachloride($CCl_4$) was decreased with increase of relative humidity, challenge concentration and particle size (0.6~2.0mm) of active carbon. The adsorbed amount of $CCl_4$ was about 1. 1mg/$m^2$ at RH 40% and 0. 5mg/$m^2$ at RH 80% . However in the case of prehumidified active carbon, humidity did not affected to 1% breakthrough time up to RH 40%.

  • PDF

A Temperature-Compensated Hygrometer Using Resistive Humidity Sensors (전기 저항식 습도 센서를 이용한 온도 보상된 습도계 설계)

  • Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.27-32
    • /
    • 2006
  • A temperature-compensated hygrometer has been developed using resistive humidity sensors. It consist of a sine wave generator, logarithm converters, rectifiers, and amplifiers. The hygrometer accomplishes the linearization and temperature compensation of sensor characteristics. The theory of operation is presented and experimental results are used to verify theoretical predictions. The experimental results show that the conversion sensitivity of the hygrometer is about 24.8 mV/%RH and the linearity error of the conversion characteristic is less than 17.2 % over a relative humidity range from 30 to 80 %RH. The results also show that the temperature coefficient of the output voltage is less than $10149ppm/^{\circ}C$ over a temperature range from 22 to $40^{\circ}C$.

Effect of Air Temperature and Relative Humidity during Flowering on Pollen Germination of Oriental Melon (Cucumis melo L. var. makuwa Makino) (개화 시 기온 및 상대습도가 참외의 화분발아에 미치는 영향)

  • Im, Kyung Ran;Suh, Jun Kyu
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • This study was conducted to examine the effect of temperature and relative humidity (RH) that might affect the pollen germination rate and pollen tube length in oriental melon. The experiment was performed using three cultivars namely 'Mallijangseong', 'Ohbokggul', and 'Joeundae' wherein environmental conditions were controlled by three different temperatures $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$ and also three RH levels 30%, 60%, and 90%. Based on the results in terms of temperature, true to all cultivars, plants exposed to $25^{\circ}C$ had the highest pollen germination rate while plants exposed to $15^{\circ}C$ had the lowest. Among the three cultivars, 'Mallijangseong' had the highest in terms of pollen germination rate, followed by 'Ohbokggul', and lastly was 'Joeundae' that showed the lowest germination rate. In the case of pollen tube length, pollen exposed under $35^{\circ}C$ showed the longest tube length, followed by pollen under $25^{\circ}C$, and pollen under $15^{\circ}C$ remarkably had the shortest tube length. Across the three cultivars 'Ohbokggul' had the longest pollen tube length. In the case of RH, pollen germination response among three cultivars depends on the humidity conditions but based on the results, there was no significant differences although high germination rate was observed in highest humidity condition. Between each cultivar, 'Ohbokggul' had the lowest pollen germination rate compared with 'Mallijangseong' and 'Joeundae' after exposure to different RH conditions wherein pollen germination showed significant differences among treatments. The pollen collected under 60% RH had the longest pollen tube length, followed by 30%, and the shortest was under 90% RH. In general, 'Ohbokggul' had the longest pollen tube length while 'Joeundae' had the shortest among the three cultivars.

Influence of Different Environmental Conditions on Cocoon Parameters and Their Effects on Reeling Performance of Bivoltine Hybrids of Silkworm, Bombyx mori. L.

  • Gowda B. Nanje;Reddy N. Mal
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • Three newly authorized bivoltine silkworm hybrids namely, $CSR2{\times}CSR4$ (productive single hybrid), $(CSR6{\times}CSR26){\times}(CSR2{\times}CSR27)$ (productive double hybrid) and $CSR18{\times}CSR19$ (robust single hybrid) were chosen for the present study. These hybrids were subjected to different temperature and humidity treatments i.e., $25{\pm}$1^{\circ}C and RH $65{\pm}5%$ (control), $30{\pm}1^{\circ}C$, with combinations of low relative humidity (RH $65{\pm}5%$) and high RH ($85{\pm}5%$) at different stages during rearing and spinning of silkworm larvae. The larvae of after 3rd moult were subjected to different thermal and humidity stress till the assessment of cocoon traits. The comparative rearing and reeling performance clearly indicated that the deleterious effect of high temperature and high RH was more pronounced for the majority of traits such as cocoon uniformity, cocoon weight, shell weight, shell percentage, reelability, filament length, raw silk percentage raw silk recovery denier and waste percentage on silk weight than other temperature and RH treatments and this effect was almost similar for all three silkworm hybrids studied. The present investigation clearly indicate that the deleterious effect of high temperature and high RH was more pronounced on rearing and spinning of silkworm larvae than other temperature and RH treatments and similar effect was noticed for all the three silkworm hybrids studied. The cocoon characters can be improved by providing ideal environmental conditions even during spinning stage of larvae affected with high temperature and RH. The study also suggest that high temperature and low humidity has greater effect during rearing stage than spinning stage.

Humidity-Sensitive Properties of Polyelectrolytes Containing Alkoxysilane Crosslinkers

  • Gong, Myoung-Seon;Lee, Chil-Won;Park, Hyung-Seok
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.311-315
    • /
    • 2004
  • We have prepared new polyelectrolytes containing trialkoxysilyl groups by copolymerizing 3-(trimethoxysilyl)propyl methacrylate (TSPM) with either [2-(methacryloyloxy)ethyl]trimethyl ammonium chloride (METAC), [2-(methacryloyloxy)ethyl]dimethyl propyl ammonium bromide (MEDPAB), or [2-(acryloyloxy)ethyl]trimethyl ammonium chloride (AETAC). The copolymers TSPM/METAC, TSPM/MEDPAB, and TSPM/METAC having compositions of 15/85, 10/90, and 5/95, respectively, were self-crosslinkable polyelectrolytes that possess humidity-sensitive properties. We measured the impedances of the copolymers at various relative humidities (RHs) and found that the resistance was dependent on the content of METAC, MEDPAB, or AETAC. The impedance changed from 10$\^$7/ $\Omega$ at 20% RH to 10$^3$ $\Omega$ at 95% RH, which is quite a suitable range for a humidity sensor that is to be utilized at ambient humidity. We also performed tests of the materials temperature dependence, hysteresis, response time, and water durability.

Effects of Storage Conditions on Qualities of Buttercup Squash (Kabocha) (밤호박의 저장 온도와 습도가 품질에 미치는 효과)

  • Han, Jin-Suk;Chung, Moon-Cheol;Kim, Sung-Ran
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.644-651
    • /
    • 2007
  • To establish the optimum conditions for storing buttercup squash, we examined the effectiveness of several storage methods and the quality of the squash under various storage conditions, including temperature (12 and $20^{\circ}C$) and relative humidity (20, 40, 60, and 80%). The spoiling rate of the squash was affected more by the storage temperature than the relative humidity, and the squash stored at $20^{\circ}C$ started to be deteriorated after 20 days of storage. At $20^{\circ}C$, soluble solid content gradually increased until 20 days of storage, and then it tended to decrease. The L-value had a tendency to increase with days of storage, and the a- and b-value also increased after 40 days. In addition, the color changes were great when the squash was stored at high temperature and high relative humidity. The total pectin content increased until 20 days at $20^{\circ}C$, and then it decreased, but less change was observed in the squash stored at $12^{\circ}C$. Overall, the results showed that storage at $20^{\circ}C$ after field curing resulted in excessive weight loss, color loss and poor eating quality, as well as a high level of decay (approximately 70%) after 40 days. However, the squash stored at $12^{\circ}C$ and 60% RH (relative humidity) showed less degreening and had a reduced level of decay, below 10%.

Hygroscopic characteristics and changes of quality attributes for composite seasoning with relative humidity (복합조미료의 상대습도에 따른 흡습특성 및 품질변화)

  • Kim, Hyun-Ku;Jo, Kil-Suk;Moon, Kwang-Deog;Park, Mu-Hyun
    • Applied Biological Chemistry
    • /
    • v.35 no.3
    • /
    • pp.186-190
    • /
    • 1992
  • Composite seasoning was stored at the temperature of $40^{\circ}C$ and $50^{\circ}C$, the relative humidity of 11, 32, 57, 65, 75 and 95% without any packaging. The moisture content reached to equilibrium state within short period below 57% RH, but it increased rapidly above 65% RH. The hygroscopic characteristics of compoposite seasoning was similar to each temperature and the amount of absorbed water was decreased at the higher temperature. The optical density due to browning development was increased above 57% RH during storage. L and b value of composite seasoning was decreased according to the increase of temperature and relative humidity. Palatibility of color, taste and flavor, and caking of composite seasoning was sharply decreased above 57% RH during storage.

  • PDF

Pilot Investigation on Moisture Variation Aspects in Pavement Materials Based on Relative Humidity Measurements (도로포장 재료의 상대습도 측정에 의한 수분변화 특성 분석 기초 연구)

  • Kim, Seong-Min;Park, Hee-Beam;Cho, Byoung-Hooi
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.87-99
    • /
    • 2006
  • This study was conducted to investigate whether the moisture variation aspects in pavement materials can be analyzed based on the convenient and reliable relative humidity(RH) measurement techniques. First, the ambient RH was measured using various sensors and the accuracies and calibration methods of the sensors were examined. Then, the RH of a cement mortar specimen was measured using the reliable sensors and the data was analyzed. In addition, the feasibility of using the RH measurement sensors to analyze the permeability of pavement materials was investigated. From this study, it was found that the Hygrochron was the most appropriate sensor to measure the RH of pavement materials, and the proper installation and calibration methods were developed. The RH of the cement mortar specimen tended to approach the ambient RH and was not much affected by the variation of the ambient RH. The specimen's RH variations at the surface and at the center showed a clear time lag. The RH measurement sensor was also found to be an appropriate tool for water permeability tests, and the methodologies to evaluate the permeability of pavement materials were proposed.

  • PDF

Effect of Humidity and Flooding on the Performance of Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 성능에 미치는 습도와 플러딩의 영향)

  • Hwang, Byungchan;Chung, Hoi-Bum;Song, Myung-Hyun;Oh, Sung-June;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.302-306
    • /
    • 2017
  • Humidity affect performance and durability of proton exchange membrane fuel cell (PEMFC). High humidity of gases generally enhance the performance, but high humidity have the danger of flooding. I-V performance, linear sweep voltammetry, cyclo voltammetry, and impedance of micro-channel cell measured with change of relative humidity (RH). Flooding phenomena started at RH 70%. Ion conductivity of membrane reached maximum value at RH 80%. Maximum current density of $1,700mA/cm^2$ (at 0.6 V) was obtained at RH 80%. Therefore the effect of ion conductivity increasement was higher than that of mass transfer decrease by flooding at RH 80%.

Influence of Stratospheric Intrusion on Upper Tropospheric Ozone over the Tropical North Atlantic

  • Kim, So-Myoung;Na, Sun-Mi;Kim, Jae-Hwan
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.428-436
    • /
    • 2008
  • This study observed the upper tropospheric ozone enhancement in the northern Atlantic for the Aerosols99 campaign in January-February 1999. To find the origin of this air, we have analyzed the horizontal and vertical fields of Isentropic Potential Vorticity (IPV) and Relative Humidity (RH). The arch-shaped IPV is greater than 1.5 pvus indicating stratospheric air stretches equatorward. These arch-shaped regions are connected with regions of RH less than 20%. The vertical fields of IPV and RH show the folding layer penetrating into the upper troposphere. These features support the idea that the upper tropospheric ozone enhancement originated from the stratosphere. Additionally, we have investigated the climatological frequency of stratospheric intrusion over the tropical north Atlantic using IPV and RH. The total frequency between the equator and $30^{\circ}N$ over the tropical north Atlantic exhibits a maximum in northern winter. It suggests that the stratospheric intrusion plays an important role in enhancing ozone in the upper troposphere over the tropical north Atlantic in winter and early spring. Although the tropospheric ozone residual method assumed zonally invariant stratospheric ozone, stratospheric zonal ozone variance could be caused by stratospheric intrusions. This implies that stratospheric intrusion influences ozone variance over the Atlantic in boreal winter and spring, and the intrusion is a possible source for the tropical north Atlantic paradox.