• Title/Summary/Keyword: relative growth

Search Result 2,246, Processing Time 0.023 seconds

TGF-β Signaling and miRNAs Targeting for BMP7 in the Spleen of Two Necrotic Enteritis-Afflicted Chicken Lines

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • Transforming growth factor beta ($TGF-{\beta}$) signaling pathways are involved in the regulation of proliferation, differentiation, immunity, survival, and apoptosis of many cells. The aim of this study was to investigate the differential expression of $TGF-{\beta}$-related genes, and their interactions and regulators in the spleen of two genetically disparate chicken lines (Marek's disease resistant line 6.3 and Marek's disease-susceptible line 7.2) induced with necrotic enteritis (NE) by Eimeria maxima and Clostridium perfringens infection. By using high-throughput RNA-sequencing, we investigated 76 $TGF-{\beta}$-related genes that were significantly and differentially expressed in the spleens of the chickens. Approximately 20 $TGF-{\beta}$ pathway genes were further verified by qRT-PCR, and the results were consistent with our RNA sequencing data. All 76 identified genes were analyzed through Gene Ontology and mapped onto the KEGG chicken $TGF-{\beta}$ pathway. Our results demonstrated that several key genes, including $TGF-{\beta}$1-3, bone morphogenetic proteins (BMP)1-7, inhibitor of differentiation (ID) proteins ID1-3, SMAD1-9, and Jun, showed a markedly differential expression between the two chicken lines, relative to their respective controls. We then further predicted 24 known miRNAs that targeted BMP7 mRNA from 139 known miRNAs in the two chicken lines. Among these, six miRNAs were measured by qRT-PCR. In conclusion, this study is the first to analyze most of the genes, interactions, and regulators of the $TGF-{\beta}$ pathway in the innate immune responses of NE afflicted chickens.

Study on the Developmental Toxicity of Thimerosal (Thimerosal의 발생독성에 관한 연구)

  • 곽승준;이규식;김순선;손경희;김소희;채수영;최요우;원용혁;박귀례
    • Toxicological Research
    • /
    • v.19 no.4
    • /
    • pp.267-275
    • /
    • 2003
  • The purpose of our study was to evaluate the toxicity of the thimerosal in embryos and neonates. Thimerosal (also known as mercurothiolate) is a mercury-containing compound used in trace amounts to prevent bacteria and other organisms from contaminating vaccines, especially in opened multi-dose vials. The toxicity of mercury is well known and those most at risk occurrs in unborn babies and newborn babies. Test methods included in vitro whole embryo culture (WEC) system and in vivo test of neonatal toxicity in Wistar rats. Ethylmercury and methylmercury were used as positive controls for the evaluating of toxic effects of mercury. In WEC assay, treated concentrations of thimerosal, ethylmercury and methylmercury were up to 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5 and 5 $\mu\textrm{g}$/$\textrm{m}{\ell}$, respectively. All compounds didn't show any morphological abnormalities, but showed retardation of growth and development in dose dependent manner (> 0.5 $\mu\textrm{g}$/$\textrm{m}{\ell}$). These data indicated that thimerosal showed developmental toxicity in vitro. In vivo neonatal toxicity, Wistar rats were administered subcutaneously with thimerosal, ethyl mercury, or methylmercury (5, 25, 50, 250, and 500 $\mu\textrm{g}$/kg) during from postnatal day (PND) 4 to 25. Significant effects of these compounds on relative organ weights and organ morphology were not observed in this experiment. However, accumulation of mercury was detected in the kidney and testis when treated with thimerosal, ethylmercury, or methylmercury. These results suggest that thimerosal may be a harmful compound to embryo and neonate, but used concentration of thimerosal in these experiments is much higher than that of clinical application. Further investigation is needed on the safety of vaccine components, i.e. a thimerosal using in vitro and in vivo tests in the future.

Pyramiding transgenes for potato tuber moth resistance in potato

  • Meiyalaghan, Sathiyamoorthy;Pringle, Julie M.;Barrell, Philippa J.;Jacobs, Jeanne M.E.;Conner, Anthony J.
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • The feasibility of two strategies for transgene pyramiding using Agrobacterium-mediated transformation was investigated to develop a transgenic potato (Solanum tuberosum L. cv. Iwa) with resistance to potato tuber moth (PTM) (Phthorimaea operculella (Zeller)). In the first approach, cry1Ac9 and cry9Aa2 genes were introduced simultaneously using a kanamycin (nptII) selectable marker gene. The second approach involved the sequential introduction (re-transformation) of a cry1Ac9 gene, using a hygromycin resistance (hpt) selectable marker gene, into an existing line transgenic for a cry9Aa2 gene and a kanamycin resistance (nptII) selectable marker gene. Multiplex polymerase chain reaction (PCR) confirmed the presence of the specific selectable marker gene and both cry genes in all regenerated lines. The relative steady-state level of the cry gene transcripts in leaves was quantified in all regenerated lines by real-time PCR analysis. Re-transformation proved to be a flexible approach to effectively pyramid genes for PTM resistance in potato, since it allowed the second gene to be added to a line that was previously identified as having a high level of resistance. Larval growth of PTM was significantly inhibited on excised greenhouse-grown leaves in all transgenic lines, although no lines expressing both cry genes exhibited any greater resistance to PTM larvae over that previously observed for the individual genes. It is anticipated that these lines will permit more durable resistance by delaying the opportunities for PTM adaptation to the individual cry genes.

Optimization of shoot cultures and bioactive compound accumulation in Rosa rugosa during acclimatization

  • Jang, Hae-Rim;Park, Byung-Jun;Park, Seung-A;Pee, Ok-Ja;Park, So-Young;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.104-109
    • /
    • 2016
  • Rosa rugosa is a medicinal, ornamental, and edible plant native to Eastern Asian countries, including Korea, Japan, and China. The aim of this study was to establish a system for biomass production and secondary metabolite accumulation during in vitro culture and acclimatization of Rosa rugosa. The highest rate of multiple shoot proliferation was achieved with $8.8{\mu}M$ benzyladenine (BA) (83.3%). However, the number of shoots (14.4 per explant) at $4.4{\mu}M$ BA was higher than that at $8.8{\mu}M$ BA. Compared to BA, a combination of thidiazuron (TDZ) and indole butyric acid (IBA) exhibited significantly lower shoot induction, with only 50.0~79.2% and 4.2~16.7% relative shoot formation, respectively. During acclimatization, shoots were sampled every week and their total phenolic contents were analyzed. Among various growth factors, fresh weight showed the most dramatic increase from the 3rd week (88.0 mg/plant) to 4th week (132.7 mg/plant). Total phenolics and flavonoids contents were the highest at $1^{st}$ week of acclimatization. Depending on developmental stages, total phenolics and flavonoids contents were higher in 1-yr-old shoots grown ex vitro than in those of older field-grown or in vitro-grown plants. Amongst different ages of field grown plants, 6-year-old plants, the oldest in this study, showed the lowest content in total phenolics.

Establishment of a novel plant regeneration system from suspension-derived callus in the halophytic Leymus chinensis (Trin.)

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.228-235
    • /
    • 2010
  • The establishment of cell suspension culture and plant regeneration of the halophytic Leymus chinensis (Trin.) are described in this study for the first time. Callus induction solid medium containing Murashige and Shoog (MS) basic salt, $2.0\;mg\;l^{-1}$ 2,4-dichlorophenoxyacetic acid (2,4-D), and $5.0\;mg\;l^{-1}$ L-glutamic acid with $30.0\;g\;l^{-1}$ sucrose and $4.0\;g\;l^{-1}$ gelrite for solidification induced the highest rate of cell division in Type 1 callus among calli of various types. Liquid medium with the same hormone distribution was therefore, used for cell suspension culture from Type 1 callus. Over a 30 d suspension culture at 100 rpm, great amounts of biomass were accumulated, with 71.07% average daily increment and 22.32-fold total fresh weight increment. Comparison of before and after suspension culture, the distribution of different size callus pieces and the maintenance of callus type were basically unaltered, but a slight increase in relative water contents was observed. To induce the potential of plant regeneration, the directly transferring on plant regeneration solid medium containing MS basic salt, $0.2\;mg\;l^{-1}$ $\alpha$-naphthalene acetic acid (NAA), $2.0\;mg\;l^{-1}$ kinetin (Kn), and $2.0\;g\;l^{-1}$ casamino acid and indirectly transferring were simultaneously performed. Even now growth rates of suspension-derived callus on solid medium were approximately half of those of Type 1 callus, but faster somatic embryogenesis was observed. Rooting of all regenerated shoots was successfully performed on half-strength MS medium. All plants appeared phenotypically normal.

Brassica rapa Sec14-like protein gene BrPATL4 determines the genetic architecture of seed size and shape

  • Kim, Joonki;Lee, Hye-Jung;Nogoy, Franz Marielle;Yu, Dal-A;Kim, Me-Sun;Kang, Kwon-Kyoo;Nou, Illsup;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.332-340
    • /
    • 2016
  • Seed size traits are controlled by multiple genes in crops and determine grain yield, quality and appearance. However, the molecular mechanisms controlling the size of plant seeds remain unclear. We performed functional analysis of BrPATL4 encoding Sec14-like protein to determine the genetic architecture of seed size, shape and their association analyses. We used 60 $T_3$ transgenic rice lines to evaluate seed length, seed width and seed height as seed size traits, and the ratios of these values as seed shape traits. Pleiotropic effects on general architecture included small seed size, erect panicles, decreased grain weight, reduced plant height and increased sterility, which are common to other mutants deficient in gibberellic acid (GA) biosynthesis. To test whether BrPATL4 overexpression is deleterious for GA signal transduction, we compared the relative expression of GA related gene and the growth rate of second leaf sheath supplied with exogenous $GA_3$. Overexpression of BrPATL4 did not affect GA biosynthesis or signaling pathway, with the same response shown under GA treatment compared to the wild type. However, the causal genes for the small seed phenotype (D1, SRS1, and SRS5) and the erection of panicles showed significantly decreased levels in mRNA accumulation compared to the wild type. These results suggest that the overexpression of BrPATL4 can control seed size through the suppression of those genes related to seed size regulation. Although the molecular function of BrPATL4 is not clear for small seed and erect panicles of BrPALT4 overexpression line, this study provides some clues about the genetic engineering of rice seed architecture.

Studies on Korean Species of Armillaria (한국산 뽕나무버섯균의 종에 관한 연구)

  • ;;;T. C. Harrington
    • Korean Journal Plant Pathology
    • /
    • v.10 no.4
    • /
    • pp.261-269
    • /
    • 1994
  • One hundred and ninety two isolates of Armillaria were obtained from mycelial fans on infected hosts, rhizomorphs, and single basidiospores or trauma tissue of fruiting bodies. Mating tests showed that two of these isolates were A. mellea, eight were A. tabescens, 20 were A. ostoyae, and 162 were A. gallica. Armillaria ostoyae was mainly isolated from Pinus koraiensis and Qurecus spp., A. tabescens from fruiting bodies on Pinus densiflora and Qurecus spp., and A. gallica from many tree species but not Pinus koraiensis. Armillaria mellea, A. gallica, A. ostoyae and A. tabescens showed distinct protein banding patterns. Mycelial growth and rhizomorph formation was good on basal medium with ethanol added. A. gallica and A. mellea formed many rhizomorphs, but A. ostoyae did not. A. gallica showed the best rhizomorph formation on media with tannic acid and ethanol, but a. mellea formed the most rhizomorphs on gallic acid. Rhizomorphs showed monopodial branching for A. gallica and dichotomous branching for A. ostoyae. Fruiting bodies. formed in the laboratory on sawdust media most abundantly by A. tabescens. In nature, fruit body formation by A. tabescens was from early to mid August. A. ostoyae and A. gallica fruit bodies were formed from early August to late October. While there are common names in Korea for A. mellea and A. tabescens, such as mulberry mushroom relative, no common names are available for A. gallica and A. ostoyae. Therefore, we refer to a. gallica as the Gastrodia mushroom because it has been used to produce Gastrodia and A. ostoyae as the Korean pine mushroom because it is frequently found as mushrooms on Korean pine.

  • PDF

Structuyal and physical properties of thin copper films deposited on porous silicon (다공성 실리콘위에 증착된 Cu 박막의 구조적 물리적 특성)

  • 홍광표;권덕렬;박현아;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.123-129
    • /
    • 2003
  • Thin transparent Cu films in the thickness range of 10 ~ 40 nm are deposited by rf-magnetron sputtering on porous silicon (PS) anodized on p-type silicon in dark. Microstructural features of the Cu films are investigated using SEM, AFM and XRD techniques. The RMS roughness of the Cu films is found to be around 1.47 nm and the grain growth is columnar with a (111) preferred orientation and follows the Volmer-Weber mode. The photoluminescence studies showed that a broad luminiscence peak of PS near the blue-green region gets blue shifted (~0.05 eV) with a small reduction in intensity and therefore, Cu-related PL quenching is absent. The FTIR absorption spectra on the PS/Cu structure revealed no major change of the native PS peaks but only a reduction in the relative intensity. The I-V characteristic curves further establish the Schottky nature of the diode with an ideality factor of 2.77 and a barrier height of 0.678 eV. An electroluminiscence (EL) signal of small intensity could be detected for the above diode.

Effect of trimethyl-indium source depletion on InGaAsP epilayer grown by MOCVD (Trimethyl-indium 소스 고갈에 따른 InGaAsP 에피층의 특성 변화)

  • 김현수;오대곤;편광의;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.400-405
    • /
    • 2000
  • We investigated the effect of TMIn (trimethly-indium) source depletion on InGaAs, InGaAsP and 1.55 $\mu\textrm{m}$ InGaAs/InGaAsP SMQW by using EPISON ultrasonic monitor for measuring the concentration of metalorganic/carrier gas mixtures. And the problems for the growth reproducibility in MOCVD was solved by using an EPISON ultrasonic monitor with closed-loop mode under the condition of TMIn source depletion. The saturation pressure of TMIn was dramatically decreased over consumption of 80%. In the case of bulk epilayer, Up-shifting of 300 arcsec to Ga-rich direction and FWHM broadening by a factor of two in DCXRD spectrum were observed due to the TMIn source depletion. In the case of SMQW, Up-shifting of 300 arcsec to Ga-rich direction in DCXRD spectrum and blue-shift of 40 nm in PL spectrum were observed due to the TMIn source depletion. However, good reproducibility ($\Delta\theta$<$\pm$100 arcsec) was achieved even the condition of 95% of TMIn consumption, when we used the EPISON with closed-loop mode.

  • PDF

In-depth Study on the Turnover and Stress of Fashion Industry Workers in Their 20s-30s (20~30대 패션업계 종사자들의 이직과 스트레스에 대한 심층연구)

  • Joo, Mi Young;Hong, Yun Jung
    • Journal of Fashion Business
    • /
    • v.21 no.5
    • /
    • pp.43-60
    • /
    • 2017
  • The purpose of this study is to conduct an in-depth examination into the cause of stress as well as reasons for turnover relative to fashion industry workers in their 20s-30s, thereby seeking effective improvement methods to reduce turnover. The study method consisted of one-on-one in-depth interviews to collect data on 15 fashion industry workers. Results were as follow. First, causes of stress for fashion industry workers in their 20s-30s include work related factors, interpersonal relations, and organizational culture, while the most frequently mentioned reasons for turnover were concerns about career track and aptitude as well as annual salary, revealing that self-improvement related growth potential is the most significant factor for turnover. Second, it was not one stress factor that influenced turnover but a composite of several stress factors that motivated individuals to change jobs. Last, time flexibility, self-esteem, and development potential were critical factors for turnover. Self-esteem and development potential that provide a sense of acknowledgment were especially emphasized as the most significant, revealing that the younger generation considers personal happiness to be critical and the more this aspect is not treated adequately the more the odds of choosing turnover. To mitigate this issue, an in-house educational system for self-development and an assignment rotation system must be adopted for workers to change to positions that fit their aptitude.