• Title/Summary/Keyword: relative boundary conditions

Search Result 133, Processing Time 0.028 seconds

A Study on TE Scattering by a Resistive Strip Grating Between a Double Dielectric Layer Using PMM (PMM을 이용한 2중 유전체층 사이의 저항띠 격자구조에 의한 TE 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.21-26
    • /
    • 2019
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating between a double dielectric layer are analyzed by using the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. The numerical results for the normalized reflected and transmitted power are analyzed by according as the width and spacing of resistive strip, the relative permittivity and thickness of the double dielectric layers, incident angles, and uniform resisitivity. Typically, the reflected power for the conductive strip increased as the value of the relative dielectric constant increased, the reflected power for the resistive strip with uniform resistivity decreased as the value of the resisvivity increased. The numerical results for the presented structure of this paper are shown in good agreement compared to those of the existing papers.

A Study on H-polarized Electromagnetic Scattering by a Resistive Strip Grating Between a Grounded Double Dielectric Layer (접지된 2중 유전체층 사이의 저항띠 격자구조에 의한 H-polarized 전자파 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, thr H-polarized scattering problems by a resistive strip grating in a grounded double dielectric layer are analyzed by applying the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. The %error of the convergence of the reflected power according to the relative permittivity of the dielectric layer and the size of the number of rows in the square matrix was compared, as the size of the number of rows in the square matrix increased, the accuracy of the reflected power increased. As the resistivity of the resistive strip decreased, the thickness of the dielectric layers decreased, and the relative permittivity of the dielectric layers increased, the reflected power increased. The numerical results for the presented structure of this paper having a grounded double dielectric layer are shown in good agreement compared to those of the existing papers.

Relative static and dynamic performances of composite conoidal shell roofs

  • Bakshi, Kaustav;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity forces and mass induced forces compared to the isotropic constructions due to the high strength to weight ratio of the material. These light weight shells are preferred in the industry to cover large column free open spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration responses of composite conoidal shells are studied. Lagrange's equation of motion is used in conjunction with Hamilton's principle to derive governing equations of the shell. A finite element code using eight noded curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for static bending analysis and three different load time histories for solution of forced vibration problems are considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary conditions are taken up in the present study. The study shows that relative performances of different shell combinations in terms of static behaviour cannot provide an idea about how they will relatively behave under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic displacement may not be same on a shell surface.

The Analysis of Dynamic Pressure in the Molten Flux near the Meniscus during Mold Oscillation for the Continuous Casting of Steel (강의 연속주조시 Mold Oscillation에 따른 Flux층 내의 동적 압력변화 해석)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.26-33
    • /
    • 2004
  • The pressure of the mold flux acting on the meniscus shell was investigated through the coupling analysis of heat transfer in the mold and fluid flow in the flux caused by the mold oscillation. Finite element method was employed to solve the conservation equation associated with appropriate boundary conditions. As reported by previous workers, the axial pressure is positive on the negative strip time and negative on the positive strip time. A maximum pressure is predicted toward the top of the meniscus shell which has the thin shell arid a maximum value is in proportion to the relative mold oscillation velocity. The relative mold oscillation velocity was changed by the effect of meniscus level fluctuation. Therefore the pressure of the mold flux acting on the meniscus shell was different each cycle of the mold oscillation due to the irregularity of relative mold oscillation velocity.

The Effect of Customer Co-development on Firm Value (고객참여 제품개발이 기업 가치에 미치는 영향)

  • Jongkuk Lee
    • Asia Marketing Journal
    • /
    • v.12 no.3
    • /
    • pp.25-41
    • /
    • 2010
  • Customer participation is a strategic tool to facilitate the process of developing new products. This study distinguishes between two types of customer participation - customer codevelopment and contract development, and examines the benefits of customer codevelopment relative to contract development for firm value through an event study. The analysis of customer participation announcements in the biotechnology and pharmaceutical industries shows that the benefits of customer codevelopment relative to contract development on firm value are contingent upon firm- and relationship- level factors. Specifically, this study finds that the announcement of customer codveloplment contributes better to abnormal stock returns of a firm when the firm has a higher level of R&D relationship experience or when the customer codevelpment is complemented by formal contract terms, such as equity investment. The findings of this study provide important theoretical and managerial implications by revealing the boundary conditions for the benefits of customer codevelopment relative to contract development.

  • PDF

Determination of cable force based on the corrected numerical solution of cable vibration frequency equations

  • Dan, Danhui;Chen, Yanyang;Yan, Xingfei
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.37-52
    • /
    • 2014
  • The accurate determination of cable tension is important to the monitoring of the condition of a cable-stayed bridge. When applying a vibration-based formula to identify the tension of a real cable under sag, stiffness and boundary conditions, the resulting error must not be overlooked. In this work, by resolving the implicit frequency function of a real cable under the above conditions numerically, indirect methods of determining the cable force and a method to calculate the corresponding cable mode frequency are investigated. The error in the tension is studied by numerical simulation, and an empirical error correction formula is presented by fitting the relationship between the cable force error and cable parameters ${\lambda}^2$ and ${\xi}$. A case study on two real cables of the Shanghai Changjiang Bridge shows that employing the method proposed in this paper can increase the accuracy of the determined cable force and reduce the computing time relative to the time required for the finite element model.

Energy Stability Analysis on the Onset of Buoyancy-Driven Convection in a Horizontal Fluid Layer Subject to Evaporative Cooling

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.142-147
    • /
    • 2019
  • The onset of buoyancy-driven convection in an initially isothermal and quiescent horizontal fluid layer was analyzed theoretically. It is well-known that at the critical Rayleigh number $Ra_c=669$ convective motion sets in with a constant-heat-flux cooling through the upper boundary. Here, based on the momentary instability concept, the dimensionless critical time ${\tau}_m$ to mark the onset of convective motion for Ra > 669 was analyzed theoretically. The energy method under the momentary stability concept was used to find the critical conditions as a function of the Rayleigh number Ra and the Prandtl number Pr. The predicted critical conditions were compared with the previous theoretical and experimental results. The momentary stability criterion gives more reasonable wavenumber than the conventional energy method.

Analysis of TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Layer Using Point Matching Method (Point Matching Method를 이용한 접지된 유전체층 위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.371-375
    • /
    • 2014
  • In this paper, the solutions of TE(transverse electric) scattering problems by a resistive strip grating over a grounded dielectric layer are analyzed by applying the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential magnetic field and the induced surface current density on the resistive strip. The induced surface current density of resistive strip is obtained by difference of the up and down of the magnetic field in two boundary areas of the resistive strip. The numerical results for reflected power of zeroth order mode analyzed by according as the resistivity, the width and spacing of resistive strip, the relative permittivity and thickness of dielectric layer, and incident angles. The numerical results shown in good agreement compared to those of the existing papers using FGMM(fourier galerkin moment method).

Application of FEM on first ply failure of composite hypar shells with various edge conditions

  • Ghosh, Arghya;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.423-441
    • /
    • 2019
  • This study aims to accurately predict the first ply failure loads of laminated composite hypar shell roofs with different boundary conditions. The geometrically nonlinear finite element method (FEM) is used to analyse different symmetric and anti-symmetric, cross and angle ply shells. The first ply failure loads are obtained through different well-established failure criteria including Puck's criterion along with the serviceability criterion of deflection. The close agreement of the published and present results for different validation problems proves the correctness of the finite element model used in the present study. The effects of edge conditions on first ply failure behavior are discussed critically from practical engineering point of view. Factor of safety values and failure zones are also reported to suggest design and non-destructive monitoring guidelines to practicing engineers. Apart from these, the present study indicates the rank wise relative performances of different shell options. The study establishes that the angle ply laminates in general perform better than the cross ply ones. Among the stacking sequences considered here, three layered symmetric angle ply laminates offer the highest first ply failure load. The probable failure zones on the different shell surfaces, identified in this paper, are the areas where non-destructive health monitoring may be restricted to. The contributions made through this paper are expected to serve as important design aids to engineers engaged in composite hypar shell design and construction.

Analysis of the Electromagnetic Scattering by Conducting Strip Gratings with 2 Dielectric Layers On a Grounded Plane (접지평면위에 2개의 유전체층을 가지는 저항띠 격자구조에서의 전자파산란 해석)

  • 윤의중
    • The Journal of Information Technology
    • /
    • v.4 no.3
    • /
    • pp.77-86
    • /
    • 2001
  • In this paper, Electromagnetic scattering problem by a resistive strip grating with 2 dielectric layers on a ground plane according as resistivity of resistive strip, relative permittivity and thickness of dielectric layers, and incident angles of a electric wave is analyzed by applying the PMM (Point Matching Method) known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floquet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. According as the relative permittivity and the thickness of layers are increased, the values of the geometrically normalized reflected power have a high value and the values of strip width are moved toward a high value going from left to right. When the resistivity of this paper has a value of zero, the numerical results of the geometrically normalized reflected power show in good agreement with those by the PMM of existing paper. Then, the most energys of the sharp variation point in minimum values of the geometrically normalized reflected power are scattered in direction of the other angles except incident angle.

  • PDF