• Title/Summary/Keyword: related genes

Search Result 3,118, Processing Time 0.032 seconds

Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

  • Shin, Ju-Hyun;Min, Sang-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.573-580
    • /
    • 2016
  • Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery.

Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein

  • Hwang, Supyong;Kim, Soyoung;Kim, Kyungkon;Yeom, Jeonghun;Park, Sojung;Kim, Inki
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.576-581
    • /
    • 2020
  • Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5-Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells.

Screening of Inducible Resistance Genes to Macrolide-Lincosamide-Streptogramin B(MLS) Antibiotics (마크로라이드-린코사마이드-스트렙토그라민 B(MLS)계 항생물질에 대한 유도 내성)

  • Kwon, Ae-Ran;Choi, Sung-Sook;Kim, Sook-Kyung;Chung, Young-Ja;Choi, Eung-Chil;Kim, Byoung-Kak
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.293-299
    • /
    • 1994
  • Forty nine clinical isolates of S. aureus showing resistance to erythromycin(EM) were selected from 83 strains isolated recently in Korea. Fourteen strains of S. aureus showing inducible resistance to MLS antibiotics were selected by disc agar diffusion method. Colony hydridization was executed using two MLS inducible resistance genes, ermA and ermC, identified previously from S. aureus as probes. S. aureus 375 and S. aureus 507 whose genes were not homologous to those probes were finally selected. It was confirmed that the resistance genes of S. aureus 375 and S. aureus 507 had no homology with those probes in southern hybridization test using ermA, ermC and ermAM as probes. It was determined that S. aureus 375 had a plasmid whose size was about 35 kb. To know if the plasmid may have the genes related to inducible resistance to MLS antibiotics, it was attempted to transform Bacillus subtillis BR151 and S. aureus RN4220 with the plasmid isolated from S. aureus 375. It was shown that the gene related to inducible resistance to MLS antibiotics did not exist in this plasmid. These results indicate that two clinical isolates of S. aureus showing inducible resistance to MLS antibiotics have novel genes that have no homology with MLS resistance genes identified so far. It is assumed that these genes may exist in chromosomal DNA.

  • PDF

Salt-sensitive genes and their relation to obesity (소금민감성유전자와 비만)

  • Cheon, Yong-Pil;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.50 no.3
    • /
    • pp.217-224
    • /
    • 2017
  • Purpose: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. Methods: This review was written based on the modified $3^rd$ step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. Results: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), ${\alpha}$-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily ${\beta}$-2 ($CYP11{\beta}$-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), $11{\beta}$-hydroxysteroid dehydrogenase type-2 (HSD $11{\beta}$-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L),and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, $CYP11{\beta}$-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. Conclusion: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.

Differential Expression of Metabolism-related Genes in Liver of Diabetic Obese Rats

  • Seo, Eun-Hui;Park, Eun-Jin;Park, Mi-Kyoung;Kim, Duk-Kyu;Lee, Hye-Jeong;Hong, Sook-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.99-103
    • /
    • 2010
  • The Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous type 2 diabetes (T2D), develops hyperglycemic obesity with hyperinsulinemia and insulin resistance after the age of 25 weeks, similar to patients with noninsulin-dependent diabetes mellitus (DM). In the present study, we determined whether there are differences in the pattern of gene expression related to glucose and lipid metabolism between OLETF rats and their control counterparts, Long-Evans Tokushima (LETO) rats. The experiment was done using 35-week-old OLETF and LETO rats. At week 35 male OLETF rats showed overt T2D and increases in blood glucose, plasma insulin, plasma triglycerides (TG) and plasma total cholesterol (TC). Livers of diabetic OLETF and LETO rats also showed differences in expression of mRNA for glucose and lipid metabolism related genes. Among glucose metabolism related genes, GAPDH mRNA was significantly higher and FBPase and G6Pase mRNA were significantly lower in OLETF rats. For lipid metabolism related genes, HMGCR, SCD1 and HL mRNA were substantially higher in OLETF rats. These results indicate that gluconeogenesis in OLETF rats is lower and glycolysis is higher, which means that glucose metabolism might be compensated for by a lowering of the blood glucose level. However, lipid synthesis is increased in OLETF rats so diabetes may be aggravated. These differences between OLETF and LETO rats suggest mechanisms that could be targeted during the development of therapeutic agents for diabetes.

Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean) Cattle

  • Lim, Dajeong;Lee, Seung-Hwan;Kim, Nam-Kuk;Cho, Yong-Min;Chai, Han-Ha;Seong, Hwan-Hoo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • Marbling (intramuscular fat) is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the 'marbling score' trait and systemically analyzed the network topology in Hanwoo (Korean cattle). As a result, we determined 3 modules (gene groups) that showed statistically significant results for marbling score. In particular, one module (denoted as red) has a statistically significant result for marbling score (p = 0.008) and intramuscular fat (p = 0.02) and water capacity (p = 0.006). From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA) have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait.

The mRNA Expression and Methylation Pattern of Apoptosis-related and Imprinted Genes in Day 35 of Cloned Pig Fetuses

  • Jung, Hyun-Ju;Ko, Yeoung-Gyu;Hwang, Seong-Soo;Im, Gi-Sun;Park, Mi-Rung;Woo, Jae-Seok;Park, Choon-Keun;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.227-233
    • /
    • 2007
  • This study was conducted to examine the mRNA expression of apoptosis-related and imprinted genes and methylation pattern of the differentially methylated region (DMR) of H19 gene in day 35 of SCNT pig fetuses. The day 35 of natural mating (control) or cloned (clone) pig fetuses were recovered from uterus. Endometrium from dam and liver from fetus were obtained, respectively. mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. The Bcl-2 mRNA expression in clone was significantly lower than that of control (p<0.05). The mRNA expression of H19 gene in both endometrium and liver was significantly higher in clone than that of control, respectively (p<0.05). The level of IGF-2 mRNA in liver of clone was significantly lower than that of control (p<0.05), whereas the mRNA expression of IGF2-R gene in liver of clone was significantly higher than that of control (p<0.05). The DMR of H19 was lower methylation pattern in clone than that of control. These results suggest that the aberrant mRNA expression of apoptosis-related and imprinted genes and the lower DMR methylation pattern of imprinted gene may be closely related to the inadequate fetal development of cloned fetus.

Evaluation of Potential Reference Genes for Quantitative RT-PCR Analysis in Fusarium graminearum under Different Culture Conditions

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.301-309
    • /
    • 2011
  • The filamentous fungus Fusarium graminearum is an important cereal pathogen. Although quantitative realtime PCR (qRT-PCR) is commonly used to analyze the expression of important fungal genes, no detailed validation of reference genes for the normalization of qRT-PCR data has been performed in this fungus. Here, we evaluated 15 candidate genes as references, including those previously described as housekeeping genes and those selected from the whole transcriptome sequencing data. By a combination of three statistical algorithms (BestKeeper, geNorm, and NormFinder), the variation in the expression of these genes was assessed under different culture conditions that favored mycelial growth, sexual development, and trichothecene mycotoxin production. When favoring mycelial growth, GzFLO and GzUBH expression were most stable in complete medium. Both EF1A and GzRPS16 expression were relatively stable under all conditions on carrot agar, including mycelial growth and the subsequent perithecial induction stage. These two genes were also most stable during trichothecene production. For the combined data set, GzUBH and EF1A were selected as the most stable. Thus, these genes are suitable reference genes for accurate normalization of qRT-PCR data for gene expression analyses of F. graminearum and other related fungi.

Genomic Insights into the Rice Blast Fungus through Estimation of Gene Emergence Time in Phylogenetic Context

  • Choi, Jaeyoung;Lee, Jong-Joon;Jeon, Junhyun
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.361-369
    • /
    • 2018
  • The rice blast fungus, Magnaporthe oryzae, is an important pathogen of rice plants. It is well known that genes encoded in the genome have different evolutionary histories that are related to their functions. Phylostratigraphy is a method that correlates the evolutionary origin of genes with evolutionary transitions. Here we applied phylostratigraphy to partition total gene content of M. oryzae into distinct classes (phylostrata), which we designated PS1 to PS7, based on estimation of their emergence time. Genes in individual phylostrata did not show significant biases in their global distribution among seven chromosomes, but at the local level, clustering of genes belonging to the same phylostratum was observed. Our phylostrata-wide analysis of genes revealed that genes in the same phylostratum tend to be similar in many physical and functional characteristics such as gene length and structure, GC contents, codon adaptation index, and level of transcription, which correlates with biological functions in evolutionary context. We also found that a significant proportion of genes in the genome are orphans, for which no orthologs can be detected in the database. Among them, we narrowed down to seven orphan genes having transcriptional and translational evidences, and showed that one of them is implicated in asexual reproduction and virulence, suggesting ongoing evolution in this fungus through lineage-specific genes. Our results provide genomic basis for linking functions of pathogenicity factors and gene emergence time.

Effects of Brassica rapa SHI-RELATED SEQUENCE overexpression on petunia growth and development (배추 SHI-RELATED SEQUENCE 유전자 발현이 페튜니아 생장 발달에 미치는 영향)

  • Hong, Joon Ki;Suh, Eun Jung;Lee, Su Young;Song, Cheon Young;Lee, Seung Bum;Kim, Jin A;Lee, Soo In;Lee, Yeon-Hee
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.204-214
    • /
    • 2015
  • SHI-RELATED SEQUENCE (SRS) genes are plant-specific transcription factors that contain a zinc-binding RING finger motif, which play a critical role in plant growth and development. Among Brassica rapa SRS genes, BrSRS7 and BrLRP1 genes, isolated from shoot apical regions are important regulators of plant growth and development. In order to explore the function of BrSRS genes in horticultural plant growth and development, two constructs containing BrSRS7 and BrLRP1 under the control of a cauliflower mosaic virus 35S promoter were introduced into petunia by Agrobacterium-mediated transformation. The resulting transgenic plants were dwarf and compact plants with reduced plant height and diameter. Additionally, these transgenic plants had upward-curled leaves of narrow width and short internodes. Interestingly, the flower shapes of petunia were different among transgenic plants harboring different kinds of SRS genes. These phenotypes were stably inherited through generations $T_2$ and $T_3$. Semi-quantitative RT-PCR analyses of transgenic plants revealed that BrSRS7 and BrLRP1 regulate expression of gibberellin (GA)- and auxinrelated genes, PtAGL15- and PtIAMT1-related, involved in shoot morphogenesis. These results indicate that the overexpression of BrSRS7 and BrLRP1 genes suppressed the growth and development of petunia by regulating expression of GA- and auxin-related genes. From these data, we deduce that BrSRS7 and BrLRP1 genes play an important role in the regulation of plant growth and development in petunia. These findings suggest that transformation with the BrSRS genes can be applied to other species as a tool for growth retardation and modification of plant forms.