Browse > Article
http://dx.doi.org/10.5423/PPJ.2011.27.4.301

Evaluation of Potential Reference Genes for Quantitative RT-PCR Analysis in Fusarium graminearum under Different Culture Conditions  

Kim, Hee-Kyoung (Department of Medical Biotehcnology, Soonchunhyang University)
Yun, Sung-Hwan (Department of Medical Biotehcnology, Soonchunhyang University)
Publication Information
The Plant Pathology Journal / v.27, no.4, 2011 , pp. 301-309 More about this Journal
Abstract
The filamentous fungus Fusarium graminearum is an important cereal pathogen. Although quantitative realtime PCR (qRT-PCR) is commonly used to analyze the expression of important fungal genes, no detailed validation of reference genes for the normalization of qRT-PCR data has been performed in this fungus. Here, we evaluated 15 candidate genes as references, including those previously described as housekeeping genes and those selected from the whole transcriptome sequencing data. By a combination of three statistical algorithms (BestKeeper, geNorm, and NormFinder), the variation in the expression of these genes was assessed under different culture conditions that favored mycelial growth, sexual development, and trichothecene mycotoxin production. When favoring mycelial growth, GzFLO and GzUBH expression were most stable in complete medium. Both EF1A and GzRPS16 expression were relatively stable under all conditions on carrot agar, including mycelial growth and the subsequent perithecial induction stage. These two genes were also most stable during trichothecene production. For the combined data set, GzUBH and EF1A were selected as the most stable. Thus, these genes are suitable reference genes for accurate normalization of qRT-PCR data for gene expression analyses of F. graminearum and other related fungi.
Keywords
Fusarium graminearum; gene expression; quantitative real-time PCR; reference genes;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Stephens, A. E., Gardiner, D. M., White, R. G., Munn, A. L. and Manners, J. M. 2008. Phases of Fusarium graminearum development and gene expression during crown rot disease of wheat. Mol. Plant-Microbe Interact. 21:1571-1581.   DOI   ScienceOn
2 Suzuki, T., Higgins, P. J. and Crawford, D. R. 2000. Control selection for RNA quantitation. Biotechniques 29:332-337.
3 Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Pape, A. and Speleman, F. 2002. Accurate normalization of real-time quantitative PCR data by genometric averaging of multiple internal control genes. Genome Biol. 3:e34.
4 Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. and Vandesompele, J. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8:R19.   DOI
5 Lee, P. D., Sladek, R., Greenwood, C. M. and Hudson, T. J. 2002. Control genes and variability: absence of ubiquitous reference gene transcripts in diverse mammalian expression studies. Genome Res. 12:292-297.   DOI   ScienceOn
6 Lee, S.-H., Lee, J., Lee, S., Park, E.-H., Kim, K.-W., Kim, M.-D., Yun, S.-H. and Lee, Y.-W. 2009. GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot. Cell 8:116-127.   DOI   ScienceOn
7 Lee, S.-H., Lee, S., Choi, D., Lee, Y.-W. and Yun, S.-H. 2006. Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet. Biol. 43:295-310.   DOI   ScienceOn
8 Leslie, J. F. and Summerell, B. A. 2006. The Fusarium lab manual, Blackwell, Ames,
9 Liu, X., Fu, J., Yun, Y., Yin, Y. and Ma, Z. 2011. A sterol C-14 reductase encoded by FgERG24B is responsible for the intrinsic resistance of Fusarium graminearum to amine fungicides. Microbiology 157:1665-1675.   DOI   ScienceOn
10 Lord, J. C., Hartzer, K., Toutges, M. and Oppert, B. 2010. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J. Microbiol. Methods 80:219-221.   DOI   ScienceOn
11 Lysoe, E., Bone, K. R. and Klemsdal, S. S. 2009. Real-time quantitative expression studies of the zearalenone biosynthetic gene cluster in Fusarium graminearum. Phytopahtology 99:176-184.   DOI   ScienceOn
12 McMullen, M., Jones, R. and Gallenberg, D. 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 81:1340-1348.   DOI   ScienceOn
13 Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G. and Zumla, A. 2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques. 37:112-119.
14 Eisenberg, E. and Levanon, E. Y. 2003. Human housekeeping genes are compact. Trends Genet. 19:362-365.   DOI   ScienceOn
15 Gardiner, D. M., Kazan, K. and Manners, J. M. 2009. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol. Plant-Microbe Interact. 12:1588-1600.
16 Gardiner, D. M., Kazan, K. and Manners, J. M. 2009. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet. Biol. 46:604-613.   DOI   ScienceOn
17 Govindarajulu, M., Pfeffer, P. E., Jin, H., Abubaker, J., Douds, D. D., Allen, J. W., Bucking, H., Lammers, P. J. and Shachar-Hill, Y. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819-823.   DOI   ScienceOn
18 Guldener, U., Seong, K. Y., Boddu, J., Cho, S., Trail, F., Xu, J.-R., Adam, G., Mewes, H. W., Muehlbauer, G. J. and Kistler, H. C. 2006. Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet. Biol. 43:316-325.   DOI   ScienceOn
19 Gutierrez, L., Moritz, M., Guénin, S., Pelloux, J., Lefebvre, J. F., Louvet, R., Rusterucci, C., Moritz, T., Guerineau, F., Bellini, C. and Van Wuytswinkel, O. 2008. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 6:609-618.   DOI   ScienceOn
20 Hallen, H. E., Huebner, M., Shiu, S. H., Güldener, U. and Trail, F. 2007. Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genet. Biol. 44 :1146-1156.   DOI   ScienceOn
21 Anderson, C. L., Ledet-Jensen, J. and Orntoft, T. 2004. Normalization of real-time quantitative RT-PCR data: a model-based variance estimation approach to identify genes suited for normalization- applied to bladder and colon cancer datasets. Cancer Res. 64:5245-5250.   DOI   ScienceOn
22 Barber, R. D., Harmer, D. W., Coleman, R. A. and Clark, B. J. 2005. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genomics 21:389-395.   DOI   ScienceOn
23 Bustin, S. A. and Nolan, T. 2004. Pitfalls of quantitative real-time reverse transcription polymerase chain reaction. J. Biomol. Tech. 15:155-166.
24 Chen, F., Zhang, J., Song, X., Yang, J., Li, H., Tang, H., Liao, and Y.-C. 2011. Combined metabonomic and quantitative realtime PCR analyses reveal systems metabolic changes of Fusarium graminearum induced by Tri5 gene deletion. J. Proteome Res. 10:2273-2285.   DOI   ScienceOn
25 Cuomo, C. A., Güldener, U., Xu, J.-R., Trail, F. et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400-1402.   DOI   ScienceOn
26 Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. and Scheible, W. R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139:5-17.   DOI   ScienceOn
27 Desjardins, A. E. and Proctor, R. H. 2007. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 119:47-50.   DOI   ScienceOn
28 O'Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97:7905-7910.   DOI   ScienceOn
29 Olsvik, P. A., Lie, K. K., Jordal, A. O., Nilsen, T. O. and Hordvik, I. 2005. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol. Biol. 6:21.   DOI   ScienceOn
30 Pandolfi, V., Jorge, E. C., Melo, C. M. R., Albuquerque, A. C. S. and Carrer, H. 2010. Gene expression profile of the plant pathogen Fusarium graminearum under the antagonistic effect of Pantoea agglomerans. Genet. Mol. Res. 9:1298-1311.   DOI   ScienceOn
31 Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:2002-2007.
32 Pfaffl, M. W., Tichopad, A., Prgomet, C. and Neuvians, T. P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper- Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26:509-515.   DOI   ScienceOn
33 Seong, K. Y., Zhao, X., Xu, J. R., Güldener, U. and Kistler, H. C. 2008. Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet. Biol. 45:389-399.   DOI   ScienceOn