• Title/Summary/Keyword: reinforcing effect

Search Result 901, Processing Time 0.035 seconds

A Study of Conservation Treatment of the Amber Relic of the Buddha Excavated from the Naksan Temple (낙산사 출토 호박사리호 보존처리에 관한 연구)

  • Ham, Chul-Hee;Kang, So-Yeong;Hwang, Jin-Ju
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.21-29
    • /
    • 2009
  • This study shows the research of causes of deterioration of the amber from foreign cases. It also presents the conservation treatment as well as tests to examine the effect of the organic solvents on the amber in order to find reversible and safe reinforcing agent which will prevent further damage of the artefact. The result showed that there was no noticeable change in the weight of the artefact as well as on the appearance of the surface when Mineral spirit(White spirit), which is aliphatic hydrocarbon group, and Xylene, aromatic hydrocarbons group was applied. Reinforcement and restoration was carried out using Paraloid(R) B67, which has a broad option for the solvent, in Xylene. Finally, it is recommended that the use of polar organic solvent in the conservation treatment of amber artefacts should be limited.

  • PDF

Properties of Waterborne Polyurethane/Nanosilica Composite

  • Kim, Byung-Kyu;Seo, Jang-Won;Jeong, Han-Mo
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.198-201
    • /
    • 2003
  • Aqueous emulsion of polyurethane (PU) ionomers were reinforced with hydrophobic nanosilica to give composites. The aqueous emulsion was stable and the particle size increased as the content of hydrophobic nanosilica was increased. The reinforcing effect of nanosilica in mechanical properties of these composites were examined by dynamic mechanical and tensile tests, and the Shore A hardness was measured. Enhanced thermal and water resistance and marginal reduction in transparency of these composites were observed compared with pristine polymer. These results were similar with those of our previous studies on waterborne PU/organoclay nanocomposites.

Deformation Characteristics of Reinforced Polymer Concrete Beams (철근보강 폴리마 콘크리트보의 변형특성)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.63-72
    • /
    • 1988
  • The primary objective of the study was to find the deformation characteristics of reinforced polymer concrete beams. A test program was carried out to compare the behavior in deformation of polyester and MMA concrete beams with cement concrete beams but with varying ratios of tensile reinforcement. From the results the following conclusions can be made. 1.The various strengths of polymer concrete ware very high compared to the strengths for cement concrete. Also, compared to conventional concrete beams, flexural strength of reinforced polymer concrete beams was distinctly higher for the same section and steel ratios. 2.The polymer concrete beams exhibit large deflections accompanied by relatively high strengths as compared to cement concrete beams. 3.The average ultimate strain at the extreme compression fiber of polymer concrete beams was 0.01 1 cm / cm, and this value was about three to four times as large as that of cement concrete beams, 4.The polymer concrete beams developed more cracks which were more wide crack distribution spacing than the cement concrete beams, and the beams failed in a more ductile manner. 5.The reinforcing steel ratio has a significant effect on the beam strength, load-deflection response, stress-strain curve, and crack pattern of polymer concrete beams.

  • PDF

Load-carrying capacity of geosynthetic encased stone columns (지오그리드 보강 스톤컬럼 공법의 하중 지지 특성)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Lee, Dae-Young;Park, Sun-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.396-404
    • /
    • 2009
  • This paper presents the results of numerical investigation on support mechanism of geogrid-encased stone columns for use in soft ground. A number of cases were analyzed using a axial- and 3D stress-pore pressure coupled model that can effectively model construction sequence and drainage as well as reinforcing effects of geogrid-encased stone columns. The results indicated that the geogrid encasement tends to significantly improve the load carrying of a stone column. Also revealed was that such a confinement effect depends on encasement length and stiffness of geogrid. It is also shown that there exist critical encasement length and stiffness of geogrid for a given condition.

  • PDF

Properties of Polyacrylonitrile/Single Wall Carbon Nanotube Composite Films Prepared in Nitric Acid

  • Kim Seong Hoon;Min Byung Gil;Lee Sang Cheol
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.108-112
    • /
    • 2005
  • Nanocomposite films were prepared by casting the solution of polyacrylonitrile (PAN) and single wall nanotube (SWNT) in nitric acid subsequent to sonication. Even though SWNT shows good dispersion visually, the reinforcing effect was not satisfactory. The G-band Raman spectra of the drawn film clearly demonstrated that SWNTs in the film are well-oriented along the drawing axis of the film. The electrical resistivity of the film prepared using nitric acid was lower than that of the film using DMF. Thus, nitric acid is presumably more effective in dispersing nanotubes than DMF.

Development of Foundation of Urban Overpass for Bimodal Tram System (바이모달 트램 운행을 위한 도심지 고가구조물 기초형식 개발)

  • Kang, Tae-Sik;Bae, Eul-Ho;Park, Young-Kon;Yoon, Hee-Taek
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.194-198
    • /
    • 2008
  • The necessities of development of foundation having minimized occupying area and construction time are required for overpass in the downtown area by which bimodal tram will pass a crossway. We are studying a single column drilled pier foundation which is continuous from pier to pile foundation. Due to the increased resisting moment by reinforced steel which is ranged from the upper part of pile to lower part of column above ground, it can be possible to make a smaller pile-section and lessen the bar reinforcing. And for the excavation work is possible with smaller equipment, this foundation has a improved constructability and economical efficiency. This foundation needs smaller amount of concrete and has a small self-weight. It has an effect on improving resistance against earthquake due to improved ductility in addition to improved rigidity by interaction between concrete and steel.

  • PDF

Stability Analysis of Rubber Bearings for Seismic Isolation (면진용 고무 베어링의 안정성 해석)

  • 이종세;오종원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.423-430
    • /
    • 1998
  • Elastomeric bearings are frequently used as a means to isolate structural systems from earthquake loadings. The combination of rubber layers and reinforcing steel shims makes the bearings stiff axially but soft laterally The shear flexibility of these short columns can lead to relatively low buckling loads which may be further reduced when high shear strains are simultaneously imposed. The area reduction formula has been proposed to account for the reduction in buckling load due to shear. The result obtained from the formula is presumed to be conservative but the degree of conservatism is unknown. This paper describes a numerical study which aims at determining the effect of high shear strain on the critical load of rubber bearings. The results from the finite element analysis which accounts for both the material and geometric non-linearities are compared against the theoretical results in order to examine the validity of the theoretical formulas.

  • PDF

Shear Strength Properties of Fiber Mixed Soil (섬유혼합토의 전단강도 특성)

  • Cha, Hyun-Ju;Choi, Jae-Won;Lee, Sang-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.123-128
    • /
    • 2002
  • This study was performed to use fiber mixed soil which has clayey soil or sandy soil with fibrillated fiber or monofilament fiber on purpose of construction materials, filling materials, and back filling materials. In addition, this study was conducted to analyze strength properties and fiber reinforcing effect with fiber mixed soil by direct-shear test. In case of fibrillated fiber mixed soil, the more quantity of fiber was in both cohesive soil and sandy soil, the larger shear stress was in respective step of normal load. The respective mixed soil at 0.5% and 0.1% mixing ratio of monofilament fiber mixed soil showed maximum shear stress. According to unconfined compression or direct-shear test, making specimen of the monofilament fiber mixed soil, it is required to be careful and stable mixing method, while it is expected that monofilament fiber mixed soil doesn't increase strength.

A Fatigue Analysis of Prestressed Concrete Composite Girders with Time Dependent Effects (시간에 따른 영향을 고려한 프리스트레스트 콘크리트 합성 거더의 피로해석)

  • 김지상;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.126-130
    • /
    • 1992
  • Recently, fatigue problem become a critical issue in the design of prestressed concrete bridges due to the increase of traffic volumes and use of high-strength materials. Most existing studies are mainly concerned with the fatigue behavior of component materials only such as concrete, reinforcing bars, and prestressing steels and few studies exist that deals with the fatigue behavior of bridge members. An improved analytic formulation for both uncracked and cracked prestressed concrete composite section with cyclic creep effect is developed to take into account the change of neutral axis with crack propagation. The procedure also enables to investigate serviceability limit states, deflection and crack width. The present study allows more realistic analysis and design of prestressed concrete composite girder bridges under fatigue loadings.

  • PDF

A Study on the Effect of Corrosion Inhibitors for Concrete Permeability (방식재료가 콘크리트의 투수성에 미치는 영향에 관한 연구)

  • 이상엽;한만엽;이차돈;엄주용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.241-247
    • /
    • 1997
  • Reinforced concrete is in general known as high durability construction material under normal enviroments due to strong alkalinity of cement. Marine and harbour concrete as well as concrete mixed with seasand for fine aggregate are exposed to detrimental saltwater wich cause to accel-eate corrosion of reinforcing steel in concrete. If corrosion resistance of concrete gets to weaken due to carbonation and crack in cover concrete, concrete durability rapidly decrease by corrosion of reinforcement steel embedded in concrete. This research is to investigate basic physical properties of various corrosion inhibitors and to evaluate their corrosion resistance in concrete mixed with seasand. The object of this study is develop appropriate corrosion protection systems so as to enhance the durability of concrete.

  • PDF